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1 Introduction

This document describes the Scalable Modeling System (SMS) and shows how SMS
directives can be used to parallelize a serial Fortran program for distributed or shared
memory machines. SMSisintended for use with programs that perform computations on
regular gridded data sets. The primary application area thus far has been weather, ocean,
and climate models. SMS has been used to parallelize models that use finite difference
approximation (FDA) or the spectral transform method. SMS is general enough to be
useful for parallelizing similar programs in other application areas.

Before reading this document, the reader should first read the companion overview
document "SMS: A Directive-Based Parallelization Tool for Shared and Distributed
Memory High Performance Computers'. It is assumed that the reader of this User's
Guide is familiar with the concepts and terms introduced in the overview document. The
reader should also be familiar with basic parallel processing concepts such as distributed
and shared memory, message latency and bandwidth, the Single Program Multiple Data
(SPMD) programming model, and dependence analysis. The overview document
describes these concepts briefly and contains references for further reading. After
reading this User’s Guide, the reader should have a good understanding of the steps that
need to be taken to parallelize a serial program using SMS directives. If more detailed
information about any directive is needed, the reader should refer to the companion
reference document, "SMS Reference Manual”. Answers to common questions and
detailed discussions of problems not covered here may be found on the SMS FAQ web
Steat:

http://www-ad.fs .noaa.gov/ac/SMS FAQ.html

1.1 Organization of this Document

The SMS User’s Guide begins by introducing the SMS directives in their ssmplest form.
Section 2 introduces the most fundamental SMS directives with smple example
programs that use the method of finite difference approximation. This section also
introduces other SMS directives that are useful in transform-based programs such as
spectral numerical weather prediction (NWP) models. The remaining sections describe
in detail how the SMS directives are used in more complex situations. Section 3 explains
how to divide work among multiple processes by the method of data decomposition and
how to parallelize loops. Additional loop index trandations needed during parall€elization
are described in Section 4. Sections 5, 6 and 7 cover further details about the inter-
process communication directives introduced in Section 2. Section 8 describes a method
by which paralelization can be done incrementally. Section 9 addresses periodic
boundary conditions. Section 10 describes SMS support for mesh refinement (nesting)
and coupling between different grids. Section 11 discusses parallel 1/0. Directives that
control program termination are dealt with in Section 12. Section 13 discusses debugging
tools. Sections 14 and 15 explain how to build and run parallel SMS programs.


http://www-ad.fsl.noaa.gov/ac/SMS_FAQ.html

1.2 Termsand Conventions

Throughout most of this document, the term "process’ is used instead of "processor" or
"CPU". "Process' is dightly more general because it is possible to run more than one
process on a single "processor" (and this may actually make sense on some types of
CPU's that provide direct hardware support for multi-threaded applications). However,
on most machines there will be a one-to-one mapping of processes to processors.

Fortran source code will appear in couri er font. When program source code appears
inside the main body of text, it will also bei tal i ci zed. Large blocks of code will
include line numbers to simplify discussions. Commands will also appear in couri er
font and will be preceded by a generic command line prompt, ">>". The results of
commands will appear in cour i er font aswell. Warning messages output by SMS will
be couri er bol d. File names will appear in italics when not in code examples or
command lines. SMS directives will appear in bol d in code examples. When directive
arguments appear in the text they will be courier font, bold and
italicized. Sometimes example code will be a dightly modified version of a
previous example. Inthat case, the changed lines will be highlighted.



2 Getting Sarted
2.1 Basic Parallelization Steps

Thefirst step in any parallelization effort is to understand the performance characteristics
of the serial program. Program components that take little time to run may not need to be
parallelized at al. The second step is to perform dependence analysis to identify the
places in the code where inter-process communication may be required. Dependencies
will be discussed as relevant SMS directives are introduced. A strategy for dividing the
work among the processes must then be chosen. SMS uses the method of domain
decomposition in which portions of large arrays, and their associated computations, are
assigned to each process. The dependence analysis is used to help pick optimal
decompositions that will minimize inter-process communication. The final step isto add
SM S directivesto parallelize the code.

To build the paralel program, the Parallelizing Pre-Processor (PPP, a component of
SMYS) is first run to trandate the source code with directives into new parallel source
code. The translated source code is then compiled and linked with the SMS library to
produce an executable program that can be run on multiple processes. The snsRun
command is used to run the parallel program. The debugging features of SMS can then
be used to test the parallel program.

SMS supports ANSI standard Fortran77 and Fortran90 language features such as full
array assignment, allocatable arrays, namelist, pointer, include, do-enddo, automatic
arrays, and while statements. Partial support of modules is aso offered (modules may
contain variable declarations but not subroutines). Currently, only fixed-format source
code is accepted. A more detailed description of supported language features can be
found at the following SMS web site:

http://www-ad.fsl.noaa.gov/ac/SMS Supported Fortran Features.html

2.2 A Very Simple Program

Below isasimple Fortran program that prints a message on the screen:

program basi c_ex1
print *,'HELLO
end

If this program were stored in a file named basic_ex1.f, it could be built using the
following command:

>> f90 -0 basic_exl basic_exl.f

The above command assumes that the Fortran compiler is named “f90". When run, the
program produces the expected output on the screen:


http://www-ad.fsl.noaa.gov/ac/SMS_Supported_Fortran_Features.html

>> basi c_ex1

HELLO

This program is simple enough that a parallel version can be built directly without adding
any SMS directives. To build with SMS, first run the Parallel Pre-Processor (PPP) to
convert the print statements into parallel print statements:

>> ppp basic_exl.f

The above command assumes that the SM'S environment variable has been correctly set
and that $SMS/bin isin the current path. For example, if SMSislocated in the directory
/usr/local/smg/ then (assuming a c-shell environment) the SMS environment variable
should be set as follows:

>> setenv SMS /usr/local/sns

The path could be modified using acommand like this:
>> set path= ( $SMS/bin $path )

See Section 15.3 for details about setting other environment variables used by SMS.
SMS trandates the serial code in basic_ex1.f into parallel code and places the result in
file basic_exl sms.f. Depending on the configuration of SMS, other temporary files may
also be created. The next step is to compile basic_exl_sms.f and link it to the SMS
library.

>> f90 -c -1$SM5/include basic_exl_sns.f
>> f90 -0 basic_exl_snms -1 $SM5/include basic_exl_sns.o0 -L$SMS/Iib \
-l sms -1 nmpi

The above example assumes common behavior for f90 options "-I" (specify path for
include files) and "-L" (specify path for libraries). Some Fortran compilers handle these
options in dightly different ways. Note that link argument "-Impi" links to the Message
Passing Interface (MPI) library. SMS uses MPI to perform underlying low-level inter-
process communication on most supported machines. Some machines may require
different linkers or linker argumentsto link to their MPI libraries.

The next step isto run the parallel program:

>> spsRun -np 1 basic_ex1_sms

The snmsRun command shown above runs program basic ex1_sms on 1 process. The
output written to the screen will look something like this:

SMB:: Program started: 1999:12:02::15:55:22
SMS:  BI TW SE EXACT reductions will NOT be used.
HELLO
SMB:: Program conplete, exiting: 1999:12:02::15:55:22 Elapsed Timre = 0
sec.



All output lines beginning with "SMS::" are diagnostic messages from the SM S run-time
system. The first and last output lines are time-stamps printed by SMS when a program
begins and when it ends. These time-stamps are a useful guide for measuring wall-clock
run times. The second text line is another message from SMS that indicates default
behavior of reduction operations to be discussed in Section 7.2. Henceforth, diagnostic
messages from SMS will usually be omitted for brevity. The remaining line contains the
text that was output when this program was run as a serial Fortran code.

The program can be run on 3 processes using the sns Run command like this:

>> spsRun —np 3 basic_ex1_sms

The following text appears on the screen:

HELLO

Thislooks just like the run made on one process. Why? By default, SM S prints only one
message per Fortran print (or write) statement to mimic the behavior of the original seria
code as closely as possible. SMS also provides other "parallel print” modes, as described
in Section 2.3.2 and in detail in Section 11.2.

2.3 Simple Computation on a Regular Grid

Example 2-1 illustrates a very simple code that initializes an array, performs a simple
computation, and prints results on the screen. It consists of two parts: include file
basic.inc and sourcefile basic_ex2.f.

[Include file: basic.inc]
integer im jm
conmon /sizes_com im jm
[ Source file: basic_ex2.f]

program basi c_ex2
i ncl ude 'basic.inc'

im= 10
jm= 10

call conpute
end

subroutine compute
i ncl ude ' basic.inc'
integer i, j, xsum
integer x(imjm
do 100 j=1,jm
do 100 i=1,im
x(i,j) =
100 conti nue

i
1



xsum = xsum + x(i,j)
200 conti nue
print *,'xsum=",6xsum
return
end

Example 2-1: A smple serial codeto initialize an array and print a global sum.

This program initializes array x, sums the elements of x, and prints the result on the
screen as shown below:

>> basi c_ex2
xsum = 100

Notice that this program uses automatic (dynamicaly allocated) arrays instead of
traditional Fortran77 static array declarations. The SMS directives support both dynamic
and static memory allocation schemes. Examples with dynamic memory allocation are
shown first because they are dightly simpler. Static alocation examples appear in
Section 3.4.

2.3.1 Parallelization by Domain Decomposition

Programs such as this one that involve computations on regular grids are often best
parallelized using the method of domain decomposition. Arrays and the computations
performed on them are "decomposed" (divided up) among the processes as evenly as
possible. For example, Figure 2-1, Figure 2-2, and Figure 2-3 show how array X might
be decomposed in thei dimension over one, two and three processes.

Note that the sub-domains of array x become smaller as the number of processes
increases. These sub-domains are referred to as "local” arrays because they cannot be
accessed by other processes on a distributed memory machine. In SMS terms, the
original array x in the serial code is sometimes referred to as a "global array”. Indices
used to access a global array are called "global indices' while indices used to access a
local array are called "local indices'. Similarly, sizes of the dimensions of a global array
are caled "global sizes' and sizes of the dimensions of a loca array are caled "local
sizes'. For dynamic memory code, the local and global indices are identical. We will
see in Section 3.4 that the global and local indices differ from each other for static
memory codes.

10



i nt eger x(10, 10)
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Figure2-1: A graphical representation of a non-decomposed 10 by 10 integer array.

i nteger x(1:5,10) integer x(6:10,10)

10 J
9 |
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7

6
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2

1

123 45 6 7 8 9 10
PROCESS: P1 P2

Figure2-2: Anillustration of a 10 by 10 array decomposed over two processes. These integer
arraysarenow local arraysdeclared by each process. When dynamic memory is used, global
addressing is used to access local array elements. Thus, on process P2, thefirst dimension ranges
from 6 to 10.
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i nteger x(1:3,10) i nt eger x(8:10, 10)

i nteger x(4:7,10)
1,
[

=Y
o

P N WP OO N0 O

1 23 4 5 6 7 8 9 10

PROCESS: P1 P2 P3

Figure2-3: A 10 by 10 array decomposed over three processes. In thisexample, thelocally declared
size of process P2 islarger than the sizes of P1 or P3.

In this program, domain decomposition of array x requires three basic steps. First, the
way in which x will be decomposed must be described. For this ssimple example, we
choose to decompose only in the i dimension (decompositions of two dimensions are
discussed in Section 3.2). Second, the declarations of array x should be modified to
reflect smaller local sizes. Finaly, the start and stop indices of each relevant loop must
be changed to reflect the smaller range of local indices. These three steps are
accomplished using four SMS directives. The DECLARE_DECOMP and
CREATE_DECOMP directives are used to describe a decomposition. Array declarations
are modified using the DISTRIBUTE directive while loop start and stop indices are
changed using the PARALLEL directive. These directives have been inserted into the
serial program as shown in Example 2-2:

[Include file: basic.inc]
1 integer im jm
2 conmon /sizes com im jm
3 CSMS$DECLARE_DECOVP( DECOVP_I, 1)

[ Source file: basic_ex2.f]

1 pr ogram basi c_ex2
i ncl ude ' basic.inc'
im= 10
jm= 10
CSMS$CREATE_DECOVMP( DECOVP_I, <i nk, <0>)
call conpute
end

O~NO TR WN
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9 subroutine conpute

10 i ncl ude 'basic.inc'

11 integer i, j, xsum

12 CSMs$DI STRI BUTE( DECOWP_I, 1) BEA N
13 integer x(imjm

14 CSMB$DI STRI BUTE END
15 CSMB$PARALLEL(DECOWP |, <i >) BEG N

16 do 100 j=1,jm

17 do 100 i=1,im

18 x(i,j) =1

19 100 conti nue

20 xsum = 0

21 do 200 j=1,jm

22 do 200 i=1,im

23 xsum = xsum + x(i,j)

24 200 conti nue
25 CSMS$PARALLEL END

26 print *,'xsum=",xsum
27 return
28 end

Example 2-2: A simple serial code with comment-based SM S directives added.

Notice that each of the SMS directives begins with five characters "CSMS$" which
makes it a Fortran comment. Thisistrue for al SMS directives. Also, note that both the
DISTRIBUTE and PARALLEL directives come as BEGIN-END pairs. When an SMS
directive appearsin this form, its scope consists of al lines of code between the "BEGIN"
and "END" directives. Some SMS directives, such as TRANSFER (Section 6) and
REDUCE (Section 7) may be used either aone or as a BEGIN-END pair. The text
trandation effects of a BEGIN-END directive pair do not extend into called subroutines.

The first directive, DECLARE_DECOMP, is used to give a name to the SMS
decomposition that will be used to divide among the processes the work done in loops
100 and 200. Its first argument, DECOMP_I, is the user-chosen name for the
decomposition. Any valid Fortran variable name (up to 20 characters long) may be used
to name a decomposition provided it does not conflict with any variable in the seria
code. The second argument, 1, is an integer that indicates how many dimensions are
decomposed. This argument is omitted if static memory alocation is used (see Section
3.4) or if the decomposed arrays have non-unit lower bounds (see Section 3.8).

Next, the CREATE_DECOMP directive is used to describe what kind of decomposition
DECOVP_I will be. The first argument is the decomposition name DECOMP_| specified
in the DECLARE_DECOMP directive. The second argument, <i n, describes the
decomposition as a 1-dimensional decomposition where the number of data pointsis the
global size of the original serial dimension. The last argument, <0>, indicates that this
decomposition will have no hao regions (halo thickness = 0). Halo regions are
introduced later in this section and are described in detail in Section 5.1.

The third directive, DISTRIBUTE, associates array x with the decomposition
DECOWP_|I. The second argument is used to indicate how array dimension(s)
correspond to the dimensions of the decomposition named DECOVP_I . In this smple
one-dimensional decomposition, 1 indicates that the first dimension of the array x will be
decomposed as described by the single dimension of the SMS decomposition named

13



DECOVP_I . The distinction between "dimension of an array” and "dimension of an
SMS decomposition” will become more clear in the two-dimensional decomposition
examples shown later in Section 3.2.

The DISTRIBUTE directive does two things. First, it identifies array declarations that
will be trandated to use local sizes. In the above example program, the DISTRIBUTE
directive will cause the declaration of x to be trandated to a loca declarations such as
one of those shown in Figure 2-1, Figure 2-2, or Figure 2-3 (depending on the number of
processes). The second task of DISTRIBUTE is to provide information about how each
array is decomposed to other SMS directives and to support automatic parallelization of
some operations (such as unformatted 1/0). These features are described in detail in later
sections.

Finally, the PARALLEL directive identifies loops that must be modified to span the
smaller local arrays during trandation. The second argument, <i >, indicates that loops
with loop index i should be trandlated to span the decomposed dimension of array x. For
example, if the program in Example 2-2 is run on two processes then i loops 100 and
200 will span local indices 1 through 5 on each process.

Building the SMS parallel code is a bit more complicated than the previous example due
to the presence of the include file that contains a directive. Two commands are now
needed. Thefirst trandates the include file:

>> ppp --header basic.inc

The "--header" option to the PPP command indicates that the file is an include file and
must be tranglated differently than a standard Fortran source file. In the command above,
include file basic.inc will be trandated into new SMS include file
basi c. i nc. SM5. The second command requires PPP option "--Finclude" to trandate
the Fortran sourcefile:

>> ppp --Finclude=basic.inc basic_ex2.f

The "--Finclude" option to the PPP command indicates that file basi c. i nc is an
include file that has been translated by PPP. During trandation of source file
basi c_ex2. f, inclusions of thisfile will be trandated from

i ncl ude 'basic.inc'

to
i ncl ude ' basic.inc. SV5

to ensure that the translated include file is used.

Running this program on one process produces the expected result.

>> snsRun —np 1 basic_ex2_sms
xsum = 100

14



However, when this program is run on two and three processes, the values of xsum
differ from the serial run.

>> spsRun —np 2 basic_ex2_sms
xsum = 50

>> spsRun —np 3 basic_ex2_sms
xsum = 30

Why did the paralel program produce incorrect results? The answer lies in the
computations made in loop 200. In thisloop, al of the elements of array x are summed
and the result is placed in variable xsum However, when the program is run on two or
three processes, each process sums only its own local sub-domain of x as illustrated in
Figure 2-4, and Figure 2-5. To reproduce the result of the original serial code, we will
need the REDUCE (see Section 2.3.3).
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RliR|RP|R|IR|IR[R[R|R|R
RlR|R|RPR|IRP|IR|[R[R|R|R
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o | R P PR R R PR R
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© | PPl P R PR PR PR

=
o

1 2 3 45

xsum = iZ]Zx(i,j)

P1: xsum = 50 P2: xsum = 50

Figure 2-4: Each processsumsitslocal portion of thearray x.
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xsum = Zx(i,j)
P1: xsum = 30 P2: Xxsum = 40 P3: xsum = 30

Figure 2-5: In thisexample, local sumsare produced on each of the three processes.
2.3.2 Parallel Printing

In SMS, by default, only one process will print a message when a print statement is
encountered. Therefore, the value of xsum printed is the value of xsum computed
locally only on the printing process. We can see the value of xsumon every process by
changing the default print behavior with the PRINT_MODE directive. The print
statement on line 26 of the program in Example 2-2 would be modified as shown below:

CSMS$PRI NT_MODE( ASYNC) BEG N
print *,'xsum=",6xsum
CSMS$PRI NT_MODE END

This PRINT_MODE directive changes the print mode from the default mode to
"asynchronous’ mode. When a print statement is encountered in asynchronous print
mode, each process will print a message to the screen. When run on two processes, the
following results are printed:

>> spsRun —np 2 basic_ex2_sms
xsum = 50
xsum = 50

Clearly, each process has computed the correct sum for its local half of array x. When
run on three processes we may see any of the following results:
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>> snsRun —np 3 basic_ex2_sms
xsum = 40
xsum = 30
xsum = 30

>> spsRun —np 3 basic_ex2_sms
xsum = 30
xsum = 40
Xxsum 30

>> spsRun —np 3 basic_ex2_sms

xsum = 30
xsum = 30
xsum = 40

In the asynchronous print mode, the messages printed by each process may come out in
any order. Another parallel print mode supported by SMS is the "ORDERED" print
mode which preserves process order. Section 11.2 describes the SMS print modes in
more detail.

2.3.3 Reduction

We have seen that each process has computed the correct sum for its local sub-domain of
array x. To reproduce the same result as the origina serial code, the local sums must be
added together as shown in Figure 2-6. In more general terms, the computed value of
xsumdepends on all of the values of array x. This is known as a "global dependence”
because the result of the computation depends on every element of global array x.

P1 P2 P3
xsum = 30 xsum = 40

\%
U

xsum = 100

xsum = 30

xsum = 100 xsum = 100 xsum = 100

P1 P2 P3

Figure 2-6: In thisexample, the reduction gathersthelocal sums, computesa global sum and then
broadcasts theresult out to the processes.
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The REDUCE directive is used to resolve this dependence. To compute a global sum,
insert the following line immediately before the print statement on line 26 of Example
2-2.

CSMS$REDUCE( xsum SUM

The REDUCE directive performs communications necessary to reduce the local values of
avariable on each process to a single value that isidentical on all processes. A specified
operator is used to combine the values from each process. The first argument indicates
that xsum is the name of the variable to be reduced. The second argument, SUM
specifies that the local values of xsumwill be summed during reduction. Reductions are
described in more detail in Section 7. The parallel program now produces the expected
results when run on various numbers of processes (assuming the PRINT_MODE
directives used in Section 2.3.2 are removed):

>> snsRun —np 2 basic_ex2_sms
xsum = 100
>> spsRun —np 3 basic_ex2_sms
xsum = 100

2.4 Boundary Initialization

In Example 2-2, all elements of array x were initialized to the same value. Usually, it is
desirable to initialize array elements differently depending on their location. This occurs
often in models where elements near the model boundaries may be treated differently
than other array elements. Example 2-3 below shows a variant of subroutine conput e
from Example 2-2 (changes are highlighted) that sets elements on the array boundaries
wherei =1 ori =i mto 2 and al other elementsto 1. Thisisillustrated in Figure 2-7.
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Xxsum = ZZX(i,j)

I
xsum = 120

Figure2-7: Anillustration of a boundary initialization where edge point values are different than
interior points.

subroutine compute
i ncl ude ' basic.inc'
integer i, j, xsum
CSMs$DI STRI BUTE( DECOVP_I, 1) BEG N
integer x(imjm
CSMVB$DI STRI BUTE END
CSVS$PARALLEL( DECOWP_I, <i >) BEA N
do 100 j=1,jm
do 100 i=1,im
x(i,j) =1
100 conti nue
do 110 j=1,jm
x( 1,]) 2
x(imj)
110 conti nue
xsum = 0
do 200 j=1,jm
do 200 i=1,im
xsum = xsum + x(i,j)
200 conti nue
CSMB$PARALLEL END
CSMS$REDUCE( xsum SUM
print *,'xsum=",xsum
return
end

2
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Example 2-3: Boundary initialization requires special handling.

When the serial version of Example 2-3 is run, the following results are printed on the
screen:

>> basi c_ex3
xsum = 120

However, when the paralel code is run on more than one process, results are
unpredictable:

>> spsRun —np 2 basic_ex3_sms
<core dunp>

The reason for these erroneous results can be seen by examining new loop 110 in detail.
Line 14 in loop 110 contains the following statement:

X(imj) =2

This statement will perform the following assignments:

x(10, 1) = 2
x(10, 2) = 2
x( 10, 10) = 2

On process 1 of a2 process run, array x isdimensioned x( 1: 5, 1: 10) (see Figure 2-2)
so x( 10, 10) is out of bounds. The behavior of any program that performs such
assignments is unpredictable. Similarly, line 13 causes an out-of-bounds assignment on
process 2.

To address this problem, the assignment statements must be modified so they are only
executed on the processes that contain the specified globa indices in their local sub-
domains. The GLOBAL_INDEX directive solves these problems as shown below:

do 110 j=1,j
CSMS$GLOBAL_| NDEX(1) BEG N
x( 1,j) =2
X(imj) =2
CSMS$GLOBAL_| NDEX END
110 conti nue

The GLOBAL_INDEX directive ensures the enclosed statements are only executed on
the appropriate processes. Now only process 1 will execute line 13 and only process 2
will execute line 14. The argument in the GLOBAL_INDEX directive, 1, indicates that
these tranglations will be applied to array indices that correspond to the first (and in this
case only) decomposed dimension. In this case, the decomposed dimension corresponds
to thei dimension of array x. (The concept of "decomposed dimension” is explained in
detail in Section 3.) The effects of the GLOBAL_INDEX directives on the assignments
of x(1,j) and x(imj) areshown for the two process case in Figure 2-8.
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PROCESS: P1 P2

Figure2-8: GLOBAL _INDEX isused toinitializethe boundariesof thearray X.

Now when the parallel codeis run, results match the serial code:

>> spsRun —np 2 basic_ex3_sms
xsum = 120
>> snsRun —np 3 basic_ex3_sms
xsum = 120

2.5 A Simple FDA Program

The following example is a FDA program that solves Laplace's equation on a two-
dimensional surface with fixed boundaries using Jacobi relaxation. On a two-
dimensional surface, Laplace's equation takes the form:

A simple approach is to discretize the two-dimensional space and use a finite difference
approximation to the derivatives to seek a numerical solution. The discrete equation is:

4%f(i j) - f(i-1,j) - f(i+1,)) - f(i,j-1) - f(i,j+1) =0
The initial state is f on the boundaries. The boundaries are constant and non-periodic.

The above equation is solved for f(i,)) iteratively until it converges. The solution is said
to converge when the difference between successive solutions is less than a specified
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threshold. The difference between values of f(i,j) in two successive iterations is the
following:

df(i.j) = (1/4) * (F(-1)) + f(i+1) +1(1,j-1) + f(i.j+1)) - f(i.0)

Using the method of Jacobi relaxation, the value of f(i,j) during an iteration is calculated
from the value of f(i,j) computed in the previous iteration as follows:

fnew(i,j) = fold(i,j) + df(i,j)
In Example 2-4 below, boundary elements of array f are initially set to 2.0 (lines 25-31).

Laplace's equation is then solved and diagnostic messages are printed on the screen.
Previously described SM S directives have already been inserted.

[ Source file: |aplace.f]

1 program | apl ace

2 i ncl ude 'basic.inc'

3 im= 10

4 jm= 10

5 CSMS$CREATE_DECOWVP( DECOVP_I, <inp, <0>)
6 call |aplace

7 end

8

9 subroutlne | apl ace

10 i ncl ude ' basic.inc'

11 integer i, j, iter

12 real max_error

13 real tolerance

14 parameter (tolerance = 0.001)
15 CSMs$DI STRI BUTE( DECOWP_I, 1) BEA N
16 real f(imjm, df(imjm

17 CSMB$DI STRI BUTE END
18 CSMB$PARALLEL(DECOWP |, <i >) BEG N

19 do 100 j=1,jm

20 do 100 i=1,im

21 f(i,j) =0.0

22 100 conti nue

23 do 110 j=1,jm

24 CSMVS$CGLOBAL | NDEX(1) BEG N
25 f( 1,j) = 2.0

26 f(imj) =2.0

27 CSMB$G.OBAL | NDEX END
28 110 conti nue

29 do 120 i=1,im

30 f(i, 1) =2.0

31 f(i,jm =2.0

32 120 conti nue

33 iter =0

34 max_error = 2.0 * tol erance

35 Cmin iteration |oop..

36 do while ((max_error .gt. tolerance) .and. (iter .lIt. 1000))
37 iter = iter + 1

38 max_error = 0.0

39 do 200 j=2,jm1

40 do 200 i—2,|n}1

41 df(i,j) = 0.25%(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
42 & - f(iL,])

43 200 conti nue

44 do 300 j=2,jm1
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45 do 300 i=2,im1

46 if (max_error .lt. abs(df(i,j))) then
47 max_error = abs(df(i,j))
48 endi f

49 300 conti nue

50 CSMS$REDUCE( max_error, NAX)

51 do 400 j=2,jm1

52 do 400 i=2,im1

53 fCi,j) =1f(0,j) +df(i,j)

54 400 conti nue

55 enddo

56 CSMS$PARALLEL END

57 print *, 'Solution required ',iter,' iterations
58 print *, '"Final error ="', max_error
59

60 return

61 end

Example 2-4: Serial code plusdirectivesillustrate a parallel solution to Laplace's equation. This
solution, using a one-dimensional decomposition, producesincorrect results.

Notice that the REDUCE directive generates the global maximum error from the local
maxima on each process.

When the serial program is run, the following messages are printed on the screen:

>> | apl ace
Solution required 85 iterations
Final error = 9.9968910E-4

When the parallel program is run on more than one process, results are incorrect:

>> snsRun —np 2 | apl ace_sns
Solution required 45 iterations
Final error = 9.9253654E-4

>> snsRun —np 3 | apl ace_sns
Solution required 131 iterations
Final error = 9.9420547E-4

Why do results change for different numbers of processes? The answer lies in the
computations made on lines 41 and 42:

df (i,j) = 0.25%(f(i-2,j) + f(i+1,j) + f(i,j-21) + f(i,j+1)) - f(i,j)

Here, each df (i,j) is computed from f(i-1,j), f(i+1,j), f(i,j-1),
f(i,j+1),andf(i,j). Thistype of dependence is called an "adjacent dependence”
because the computation at point (i, j) depends on data at adjacent (or "nearby")
points. Adjacent dependencies are often represented graphically using a “stencil” as
shown in Figure 2-9.
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x(i,j) =y(i,j) +y(i+Lj) +y(i-1,j) +y(i,j-1) +y(i,j+1)

“Stencil”: x(i,j) dependson y(i+1,j)

< y(i,j-1)

Figure 2-9: Thisfive-point stencil illustratesthe dependencies of thearray y on the computation of
X.

In Figure 2-10 stencils have been overlaid on graphica representations of the sub-
domains assigned to each process during a run made on three processes. The stencil
centered at point (2, 2) on process P1 illustrates that computations at this grid point
require values from points (2, 2), (2,1),(1,2),(2,3),and (3, 2). These array
elements are all inside the local sub-domain of process P1. Similarly, computations at
point (5, 8) depend only on array elements inside the local sub-domain of process P2.
However, computations on sub-domain boundaries cannot be performed so easily. For
example, the stencil centered at point ( 7, 5) on process P2 depends on the element at
point (8, 5) which is located in the local sub-domain of process P3. Similarly, the
stencil centered at point ( 8, 2) on process P3 requires an element from process P2. The
results of the parallel program above are incorrect because no data is sent between
processes to resolve the adjacent dependence in loop 200.

It is possible to solve this problem by sending single data points between processes.
However, on high-latency machines, sending messages that contain only one array
element is very inefficient compared to sending messages that contain many array
elements. The most common approach to handle adjacent dependencies is to create
"halo" or “ghost” regions to store these data as shown in Figure 2-11. Each halo point
corresponds to an interior point of a neighboring process. For example, in Figure 2-11,
halo point (8,5) in process P2 corresponds to interior point (8,5) in process P3. When data
in these regions are needed, the halo regions are updated by swapping columns (or larger
blocks) of data between processes as shown in Figure 2-12. This form of inter-process
communication is called "exchange" and is supported by the EXCHANGE directive.
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Figure 2-10: lllustration of how an adjacent dependence causes out-of-bounds data r efer ences on
processes P2 and P3.
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Figure2-11: Haloregionseliminate the out-of-bounds array references. Noticethedistinction
between interior points (in white) and halo points (in gray). Thelocal indices of the halo pointson
the domain edges actually lie outside the serial domain range (1 to 10). These edge halo pointsare
only used for problemsthat have periodic boundary conditions as described in Section 9.

25



b
b

>
=
o

P NW S~ OTO N 0O

S RS

PROCESS: P1 P2 P3

Figure2-12: Haloregionsare updated by exchanging data between adjacent processes.

The laplace program in Example 2-4 can be corrected by modifying line 5 to specify one
halo point

CSVB$CREATE_DECOVP( DECOVP_I , <i b, <1>)
and by adding the following directive before line 39:
CSMVB$EXCHANGE( f )

The third argument of the CREATE_DECOMP directive has been changed to <1>. This
indicates that all arrays decomposed using DECOVP_| will have a halo region one point
thick added in the first decomposed dimension (thei dimension in this case). The only
argument of the EXCHANGE directive is the name of the variable (f ) to be exchanged.
The directive is placed immediately before loop 200 to ensure that halo regions of f are
updated prior to the computations that need them. The EXCHANGE directive is
described in more detail in section 5.1.

Now the parallel program produces the correct results on more than one process:

>> spsRun —np 2 | apl ace_sns
Solution required 85 iterations
Final error = 9.9968910E-4

>> spsRun —np 3 | apl ace_sns

Solution required 85 iterations
Final error = 9.9968910E-4
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2.6 Writing Output to Disk

The Laplace solver in Example 2-4 would be more useful if the fina state of array f
could be written to disk. This is easily done by adding the following code fragment
immediately before ther et ur n statement (line 60) in subroutine | apl ace:

open(10, file="f.out', form unfornmatted')
wite(10) f
cl ose(10)

When the serial programisrun, filef . out iswritten. For the SMS parallel program, no
additional directives are required to handle this output. By default, SMS automatically
generates f . out in exactly the same format as the serial program, for any number of
processes. However, SMS can also produce other file formats as discussed in Section
11.1.

2.7 Using Multiple Decompositions

So far, we have seen how to paralelize a program that only requires a single domain
decomposition. However, many programs require the use of different decompositions at
different times to run efficiently in parallel. The TRANSFER directive provides the
means to transform arrays between decompositions. Spectral models are prime
candidates for application of TRANSFER (see Section 6.2).

In this section, we present a simple case where two different decompositions are needed.
In Example 2-5, the statement at line 42 contains a dependence called a "recurrence
relation”. In this statement, an update to x(i,j) depends on x(i,j-1) which was
updated in the previous loop iteration. SMS does not provide directives that directly
support paralelization of a recurrence relation if the array dimension is decomposed.
Since the second (j ) dimension of x is decomposed, SMS cannot handle this statement.
Similarly, the statement at line 63 prevents decomposition in i . One solution, shown in
Example 2-5, isto decompose x ini andy inj .

[transfer.inc]
1 integer im jm
2 conmon /sizes com im jm
3
4 CSMS$DECLARE_DECOVP( DECOVP_I, 1)
5 CSMS$DECLARE_DECOVP( DECOVP_J, 1)
6
[transfer.f]
pr ogr am TRANSFER1
inmplicit none

i nclude '"transfer.inc

i nteger i

t
1
2
3
4
5
6
7 i nteger |
8

9

0

1
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11
12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63
64
65
66
67
68

CSNMB$CREATE_DECOVP( DECOMP._| |
CSNMB$CREATE_DECOVP( DECOVP_J,

call DOIT

end

subroutine DO IT
i nclude 'transfer.inc'

CSMVB$DI STRI BUTE( DECOVP_I, 1)
real x(imjm

CSMB$DI STRI BUTE END

CSMB$DI STRI BUTE( DECOVP_J, 2)
real y(imjm

CSMB$DI STRI BUTE END

C BEG N

x =1.0

CSMB$PARALLEL( DECOVP_|, <i>) BEG N

<inp,
<j np,

BEG N

BEG N

<0>)
<0>)

C dependence in the j dinension that

C SM5 does not provide directives to parallelize

doj =2, jm
doi =1, im

x(i,§) =x(i,j) +x(i,j-1)

end do
end do
CSVS$PARALLEL END

CSMS$TRANSFER( <X, Y>) BEG N
doj =1, jm
doi =1,im
y(i,j) = x(i,j)
end do
end do
CSMS$TRANSFER END

CSMB$PARALLEL( DECOVP_J, <j>) BEG N

C dependence in the i dinmension that

C SM5S does not provide directives to parallelize

doj =1, jm
doi =2, im

end
end do
CSVS$PARALLEL END

open(10,file="f1",form" unformatted')
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y(i,j) =vy(@i,j) +y(i-1,j)
do



69 wite(1l0) y

70 cl ose(10)
71

72 return
73 end

Example 2-5: A simple SM S parallel program that requirestwo data decompositions due to
recurrencerelationsini for array x andj for arrayy.

Example 2-5 contains two DECLARE_DECOMP and CREATE_DECOMP directives.
The DISTRIBUTE directive at line 24 uses DECOVP_| to decompose x ini. The
DISTRIBUTE directive at line 28 uses DECOVP_J to decompose y in j. The
TRANSFER directive at line 47 causes SMS to replace the serial code between the
BEGIN and END TRANSFER directives (a ssmple copy) with communication that re-
distributes (transposes) the data among the processes as illustrated in Figure 2-13. X is
referred to as the source array of the TRANSFER directive and y is referred to as the
destination array.

Process
Transpose

Y

X y

S | P2 [ ]

Figure 2-13: Anillustration of the data movement required between processes P1 and P2 for a
transposition operation.
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3 Decomposing Arraysand Parallelizing L oops
3.1 Choosing Decompositions

In order to choose domain decompositions that will yield optimal performance, the
dependencies of arrays on one another must be analyzed. Usually, several decomposition
options are possible. Decompositions of 3D arrays supported by SMS are shown in
Figure 3-1. Dependence analysis is used to help pick optimal decompositions that will
minimize inter-process communication. Typical FDA models will be optimally
decomposed in one or both of the horizontal dimensions as illustrated by "a’, "b", or "d"
of Figure 3-1. All of these decompositions may be used by spectra models which are
described in Section 6.2.

K

(@) (b) (©)

(d) (e ()

Figure 3-1: Three-dimensional decompositions supported by SM S.

Other issues to consider when selecting decompositions are the architecture of the
machine on which the program will most likely be run and how many processes will be
available. For vector machines, it is best to leave the inner dimension non-decomposed
when possible to maximize vector lengths. On cache-based machines, it may be best to
decompose the inner dimension instead. For example, in Figure 3-1, decomposition "a"
would preserve long vector lengths while decomposition "b" would not. In addition,
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when the number of processes available is larger than the number of grid points in the
single decomposed dimension, two dimensions should be decomposed.

3.2 Two-Dimensional Decompositions

The full power of the DECLARE_DECOMP, CREATE_DECOMP, DISTRIBUTE, and
PARALLEL directives becomes more apparent when two dimensions are decomposed.
Consider the following example:

[Include file: deconp_exl.inc]
1 integer im jm km

2 common /sizes_com im jm km
3 CSMS$DECLARE_DECOWVP( DECOVP_I J, 2)

[ Source file: deconp_ex1.f]

1 pr ogram deconmp_ex1

2 i ncl ude ' deconp_exl.inc

3 im= 15

4 jm= 10

5 km= 2

6 CSMS$CREATE _DECOVP(DECOWVP_|J, <im jnp, <0, 0>)
7 call conpute

8 end

9

10 subroutine conpute

11 i ncl ude ' deconp_exl.inc

12 integer i, j, k

13 CSMs$DI STRI BUTE(DECOWP_IJ, 1, 2) BEA N
14 integer z(imjmkm

15 CSMS$DI STRI BUTE END

16 i nteger zsum

17 CSMS$PARALLEL(DECOWP_|J,<i >, <j>) BEA N
18 do 100 k=1, km

19 do 100 j=1,jm
20 do 100 i=1,im
21 z(i,j,k) =1
22 100 conti nue
23 zsum =0
24 do 200 k=1, km
25 do 200 j=1,jm
26 do 200 i=1,im
27 zsum = zsum + z(i,j, k)

28 200 conti nue
29 CSMS$PARALLEL END
30 CSMS$REDUCE(zsum SUM

31 print *,'zsum=",zsum
32 return
33 end

Example 3-1: An SM S program that uses a two dimensional decomposition.

When run, the serial version of this program prints the following:

>> deconp_ex1
zsum = 300
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Directives CREATE_DECOMP, DISTRIBUTE, and PARALLEL now have more
complex arguments than in the simple examples from Section 2.3. The second argument
to CREATE DECOMP, <im | ne, indicates that the decomposition named
DECOVP_I J has two decomposed dimensions and that the globa size of the first
decomposed dimension isi mand the global size of the second decomposed dimension is
j m  The third argument, <0, 0>, indicates that DECOVP_I J has no halo regions in
either decomposed dimension.

The second argument to DISTRIBUTE, 1, indicates that the first dimension of array z is
decomposed as described by the first decomposed dimension of DECOVP_| J. The third
argument, 2, indicates the second dimension of array z is decomposed as described by
the second decomposed dimension of DECOMP_I J. The third dimension of array z will
not be decomposed. This is decomposition "d" in Figure 3-1. More details about
DISTRIBUTE can be found in Section 3.6.1.

The second argument to PARALLEL, <i >, is used to identify loop indices for loops
spanning the first decomposed dimension of DECOVP_1 J. Similarly, the third argument,
<j >, is used to identify loop indices for loops spanning the second decomposed
dimension of DECOVP_| J. The PARALLEL directive will transate both i and |

dimensions of loops 100 and 200 to local loop bounds.

When this code isrun on 2 or 3 processes, we see the expected results.

>> spnsRun —np 2 deconp_exl _sns

SM5:  Using default process layout (2 x 1) for deconposition deconp_ij
zsum = 300

>> spsRun —np 3 deconp_exl _sns

SMB:  Using default process layout (3 x 1) for deconposition deconp_ij
zsum = 300

Note that SMS prints an additional diagnostic message for two-dimensional
decompositions. This message describes how many processes are assigned to each
decomposed dimension, which can be useful for debugging or performance analysis. For
brevity, this message will not be shown again.

3.3 Controlling Process L ayout

By default, SM S uses a pre-determined set of rules to decide how data points are assigned
to each process and how many processes are allocated to each decomposed dimension.
Roughly speaking, the data points are distributed evenly among the processes along a
given decomposed dimension as seen in Figure 2-2 and Figure 2-3. Also, processes are
divided among the decomposed dimensions so as to minimize the amount of data moved
during an EXCHANGE operation.

SMS also provides a mechanism for the user to specify the assignment of data points
using a process configuration file in the form of a Fortran namelist. For a given
decomposition, the user defines how many processes are assigned to each decomposed
dimension. SMS will then choose how many data points are assigned to each process as
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before. The user can aso optionaly define how many data points are assigned to each
process. Example 3-2 shows how process configuration works.

[

ile config.f]
program CONFI GURE
i nteger, paraneter i
i nteger, paraneter :: j
CSMS$DECLARE_DECOVP( dhl, 2)

f

1

2 12
3 12
4 -

5 CSMs$DECLARE_DECOVP( dh2, 2)

6

7

8

9

m
m

CSMB$CREATE_DECOWP(dhl, <imjne, <0, 0>)
CSMB$CREATE_DECOVP( dh2, <imjme, <0, 0>)
CSMB$DI STRI BUTE(dhl, 1, 2) begin

real, allocatable :: al(:,:)
8 CSMS$DI STRI BUTE end
10
11 CSMS$DI STRI BUTE(dh2, 1, 2) begin
12 real, allocatable :: a2(:,:)

13 Cswms$DI STRI BUTE end

[file my_config]

&deconp

deconpl_nane=' dhl’,
deconpl_nps=2 2,
deconp2_nane=' dh2’,
deconp2_nps=4 1,

deconp2_ddi mlL_si zes=2 4 4 2/

Example 3-2: Sample program and associated configuration fileillustrating how the user can tell
SM S how to distribute the data among the processes.

The program in the example defines two decompositions. The configuration file,
ny_confi g, specifies how the data are distributed among the processes. In this case, it
indicates that two processes will be assigned to each decomposed dimension of
decomposition dhl. However, the user leaves it up to SMS to determine how many data
points are assigned to each process. Figure 3-2 shows the memory layout of al.

For dh2, the user specifies that the 4 processes will be assigned to the first decomposed
dimension. The user further specifies how many points are assigned to each process.
Figure 3-3 shows the memory layout of a2.

The user tells SM S to use configuration fileny_conf i g asfollows:

>> spsRun —cf ny_config my_program
SMS: For processor |ayout of deconposition dhl, using config file

my_config
SM5: For processor |ayout of deconposition dh2, using config file

my_config

Notice that the smsRun command does not specify how many processes are requested.
SMS figures how many are needed from the configuration file. Also notice the
diagnostic message from SMS that describes which decompositions are defined in the
configuration file. For brevity, this message will not be shown again.
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Figure 3-2: Memory layout of array al in program CONFI GURE.
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Figure 3-3: Memory layout of array a2 in program CONFI GURE.



3.4 Using Statically Allocated Memory

When dynamic memory allocation is used, SMS automatically sets local array sizes at
run-time. However, static memory codes require the local array sizes to be declared by
the programmer. In addition, the local and global indices differ (Figure 3-4 below), often
necessitating conversions between the two (see Section 4).

Example 3-3 illustrates a program using static memory allocation. In this example, the
DECLARE_DECOMP directive requires a new second argument, <(im 2)+1,
jm 2> This informs SMS that the decomposition named DECOVP_I J has two
decomposed dimensions and specifies declared local sizes for each. The declared sizes
will be used to trandate declarations of static arrays enclosed by DISTRIBUTE
directives. For instance, z will have asizeof (im2 +1, jm 2, kn) in the
trandlated version of the code in Example 3-3.

[Include file: deconp_ex4.inc]

1 integer im jm km
2 parameter (im= 15, jm= 10, km = 2)
3 CSMS$DECLARE_DECOVP( DECOVP_|J, <(im2)+1, jm 2>)

[ Source file: deconp_ex4.f]

4 program deconp_ex4

5 i ncl ude ' deconp_ex4.inc

6 CSMS$DI STRI BUTE(DECOWVP_IJ, 1, 2) BEA N

7 integer z(imjmkm

8 CSMS$DI STRI BUTE END

9 i nteger zsum i, j, k

10 CSMS$CREATE DECONP(DECCNP 1J, <im jnp, <0,0>)
11 CSMB$PARALLEL( DECOWP_I J, <i >, <J>) BEG N

12 do 100 k=1, km

13 do 100 j—lj

14 do 100 i=1,im

15 z(i,j,k) =1

16 100 conti nue

17 zsum = 0

18 do 200 k=1, km

19 do 200 j=1,jm

20 do 200 i=1,im

21 zsum = zsum + z(i,j, k)

22 200 conti nue

23 CSMS$PARALLEL END

24 CSMS$REDUCE(zsum SUM

25 print *,'zsum=",zsum
26 end

Example 3-3: An SM S program that uses static memory allocation requiresthelocal sizesbe
declared in the DECLARE_DECOMP directive. In thisexample, theselocal sizesare: (i nif 2) +1
andj m 2.

In static memory cases, where the number of processes assigned to a decomposed
dimension does not evenly divide the global size of that dimension, the declared local
sizes specified in the DECLARE_DECOMP directive must be set for the process(es) that
use(s) the most memory. For a4-process run, theterm (i ml 2) +1 (Example 3-3, line 3)
ensures there will be sufficient local memory for all processes even though two require
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local arrays of size (8, 5, 2) while the other two require arrays of size (7, 5, 2) .
Figure 3-4 illustrates this point.

PROCESS: P1, P3 P2, P4
j

i real z(8,5) real z(8,5)

10 5

9 4

8 3

72

6 1

5 5

4 4

3 3

2 2

1 1 %
“Local” indicess1 2 3 4 5 6 7 8 1 2 3 45 6 7 X
“Global” indicess1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X

UNUSED ARRAY
ELEMENTS

Figure 3-4: For static memory allocation, the size of the decomposed arraysisset in the
DECLARE_DECOMP directive based on the number of processesthat will be used to run the
program. Sometimes all the memory declared will not be used asillustrated for processes P2 and P4.
Processes P2, P3, and P4 have local indicesthat are different from the corresponding global indices
of array Z. (Non-decomposed dimension “k” isnot shown.)

A run on 4 processes yields the correct results. A run made on 8 processes also works.
Why? In this case, SMS assigns processes as shown in Figure 3-5. The largest local
array sizes required on any process for the eight-process run are(4,5,2). So the declared
local array sizes are big enough to hold the trandated arrays and the program runs as
expected. However, it wastes memory because only half of each declared array is ever
used (1:4,* *).
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In addition to wasting memory, performance of the 8-process run might not be optimal on
a cache-based machine because the data used in each array are scattered over a block of
memory twice the needed size. This will likely result in more cache misses and may
significantly degrade performance. Further, this effect becomes more severe as the
number of processes increases. For example, if the program were run on 32 processes,
the largest local array sizes required on any process would be only ( 2, 3, 2) . Therefore,
it is especialy important to declare arrays using the smallest possible sizes for large
numbers of processes.

real z(4,5) real z(3,5)

j 10
9

| 8

P N W b~ O

R N W A~ O
R N W A~ O

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
»1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

“Local” indices
“Global” indices

Figure 3-5: Memory layout for 8-processrun.

Running Example 3-3 on 2 processes produces the following:

>> spsRun —np 2 deconp_ex4_sns

Process: 1 Error at: ./deconp_ex4_sns.f:10.1

Process: 1 Error status= -2202 : USER DECLARED STATIC ARRAY IS TOO
SMALL.

Process: 1 Aborting...
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What happened? By default, the two processes are distributed along thei dimension so
the largest local array sizes required on any process for the two-process run is
(8,10, 2). However, the DECLARE DECOMP directive set local array sizes to
((imM2)+1,jm 2, knm) = (8,5, 2) whichistoo small for the two process run (see
Figure 3-4). SMS detects this error at run time, prints the error messages, and aborts the
program.

To provide sufficient memory for the local arrays in a two-process run, we can modify
the sizesin the DECLARE_DECOMP directive as follows:

CSVB$DECLARE_DECOVP( DECOMP_I J, <(im 2)+1, jnp)
If the following DECLARE_DECOMP directive were used
CSVB$DECLARE_DECOVP(DECOMP_I1J, <im jnp)

al trandated arrays would be declared full-size. This code could then be run on any
number of processes (provided each process has enough memory). This is very useful
during debugging because it allows comparison of results for runs made on different
numbers of processes. Once debugging is complete, the DECLARE _DECOMP
directives should be changed to minimize memory use.

Determining the proper local sizes for static memory models that need EXCHANGES
will be discussed in Section 5.1.3.

3.5 Load Balancing

Ideally, each process will have exactly the same amount of work to do. In practice, most
models have computations that vary spatially so some processes may have more work
than others. Thisis commonly known as load imbalance. Load imbalances slow down a
parallel program because some processes with less work are forced to wait for processes
with more work to catch up.

Load imbalances can be fixed (static) or variable (dynamic) in time. Severa types of
static load imbalances are found in weather and ocean models. One type is due to the fact
that edge processes have boundary condition calculations while interior processes do not.
We saw in Section 3.3 how the user can specify the number of grid points allocated to
each process. By giving more points to interior processes, the imbalance is mitigated.

Globa atmospheric models can have longitudinal imbalances due to differences in the
computations required for day/night points and latitudinal imbalances stemming from
summer/winter computational differences. SMS provides means to mitigate both of these
effects using a technique called index scrambling. Index scrambling, accessible via an
option to the CREATE_DECOMP directive, moves adjacent row/column pairs to other
processes. Figure 3-6 shows how the data might be distributed following longitudinal
scrambling. Due to the complexity of these redistributions, they are not permitted for
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models that have adjacent dependencies (because the EXCHANGEs would perform
poorly).

Figure 3-6: Longitude scrambling is used to reduce load imbalances due to computational
differences stemming from day/night cyclesin a global weather model. In thiscase, the model isrun
using 2 processes. One process hasthe brightly colored segments; the other hasthe darker colored
segments. The effect isto give each process half the day-time pointsand half the night-time points.

To use index scrambling, a fourth argument is added to the CREATE_DECOMP as
shown in the code fragments below:

CSMB$CREATE _DECOVP( DECOVP_J, <j mp, <0> : <SCRAMBLE LAT STRATEGY>)
CSNMS$CREATE_DECOVP( DECOMP_|, <i mp, <0> : <SCRAMBLE_LON_STRATEGY>)

In the first case, argument <SCRAMBLE LAT_STRATEGY> indicates that the first
decomposed dimension of DECOVP_J will be scrambled using a method appropriate for
balancing load among latitudes in a global model. In the second case, argument
<SCRAMBLE_LON _STRATEGY> indicates that the first decomposed dimension of
DECOVP_| will be scrambled using a method appropriate for balancing load among
longitudes in a global model. No other code changes are required to use the scrambling
feature. For thisreason, it is convenient to add this feature as a performance optimization
once debugging of the non-scrambled parallel code is complete.

A future SMS release will provide means to mitigate dynamic load imbal ances.
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3.6 Moreabout DISTRIBUTE
3.6.1 Further Detail on DISTRIBUTE Syntax

This section explains the distinction between “dimension of an array” and “dimension of
an SMS decomposition”. The DISTRIBUTE directive can decompose several types of
arrays as shown the in the following code fragments:

CSMs$DI STRI BUTE(DECOVP_1J, 1, 2) BEG N
i nteger x(imjmkm
CSMB$DI STRI BUTE END

Here, the first dimension of array x is decomposed as described by the first decomposed
dimension of DECOMP_I J and the second dimension of array x is decomposed as
described by the second decomposed dimension of DECOMP_| J. The third dimension of
array X is not decomposed.

CSMB$DI STRI BUTE(DECOVP_1J, 1, 3) BEGAN
real a(imkmjm
CSMB$DI STRI BUTE END

The numbers 1 and 3 refer to array dimensions. The order in which they appear
determines the dimensions of the decomposition to which they refer. Here, the first
dimension of array a is decomposed as described by the first decomposed dimension of
DECOWP_| J and the third dimension of array a is decomposed as described by the
second decomposed dimension of DECOMP_I| J. The second dimension of array a is not
decomposed.

CSMS$DI STRI BUTE( DECOWP_1J, 3, 2) BEG N
real b(kmjmim, avg
CSMS$DI STRI BUTE END

Here, the third dimension of array b is decomposed as described by the first decomposed
dimension of DECOMP_I J and the second dimension of array b is decomposed as
described by the second decomposed dimension of DECOMP_1 J. The first dimension of
array b isnot decomposed. avg is not decomposed at all because it isascalar variable.

The user can aso specify how variables are distributed by using variable name tags
instead of dimension numbers. For example,

CSMS$DI STRI BUTE( DECOWP_1 J, <inmp, <jmp) BEG N
real x(im jm km
CSMS$DI STRI BUTE END

again indicates the first dimension of array x is decomposed as described by the first

decomposed dimension of DECOMP_IJ and the second dimension of array X is
decomposed as described by the second decomposed dimension of DECOVP_1 J.
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CSMS$DI STRI BUTE( DECOWP_1 J, <inmp, <jmr) BEG N
real b(km jm im
CSMS$DI STRI BUTE END

indicates that the third dimension of b is distributed based on the first decomposed
dimension and the second dimension of b is distributed based on the second
decomposed dimension.

Using this syntax, it is possible to enclose the last two arrays inside the same distribute
directive:

CSMS$DI STRI BUTE( DECOWP_1 J, <inmp, <jmr) BEG N
real x(im jm km
real b(km jm im

CSMs$DI STRI BUTE END

3.6.2 Using DISTRIBUTE to Define Decomposed Boundary Arrays

Regiona weather forecast models and ocean models often require boundary condition
data. A code segment handling western boundary conditions might look as shown in
Example 3-4.

subrouti ne UPDATE BCUNDARIES(u)

integer, parameter :: im=
i nteger, paraneter :: jm= 20
integer, paranmeter :: km= 30

csns$decl are_deconp(dh, 2)

]

csne$di stri bute(dh, 1, 2) beg
real u(im jm km
csne$di stribute end

csne$di stri bute(dh, , 1) begin

real ubw(jm km
csne$di stribute end

open(10, file="west_bdy', form=" unformatted')
read(10) ubw
cl ose(10)

NRRRRRRRRP R
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csne$paral l el (dh, , <j>) begin
csns$gl obal _i ndex(1) begin

21 do k =1, km

22 doj =1, jm

23 u(l, j, k) = (u(l, j, k) + ubwj,k))/2.0
24 end do

25 end do

26 csns$gl obal _i ndex end

27 csns$parall el end

28

29 return

30 end

Example 3-4: Subroutine showing how boundary condition arrays can be handled in SM S.

The second DISTRIBUTE statement on line 11 defines an unusual kind of decomposed
array. Its first dimension is decomposed according to the second dimension of
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decomposition dh but none of the array dimensions are decomposed based on the first
decomposed dimension. Since the exact manner in which this array is distributed is
somewhat ill-defined, it can only be read in from disk. REDUCE, SERIAL,
TRANSFER, and COMPARE_VAR (discussed later in Section 13.1) cannot be applied
to this type of array. Output is also not allowed. The PARALLEL directive syntax on
line 19 will be discussed in Section 3.7. Note that for a dynamic memory code like
Example 3-4, it is possible to avoid these problems by simply leaving the ill-defined
array non-decomposed. In this case, removing the DISTRIBUTE statement on line 11
would be sufficient. The only drawback to this solution is a possible performance
degradation due to wasted memory (each process will only use a small portion of
globally-sized array ubw). This solution will not work for a static memory code unless
TO_GLOBAL directives are used to handle index trandlation (see Section 4.1).

3.7 MoreAbout PARALLEL

The PARALLEL directive will trandate serial loops correctly provided the upper and
lower loop bounds are valid global indices. For example, thei and|j loops below would
all be correctly trandated:

CSMS$PARALLEL( DECOVP_I J, <i >, <j>) BEA N
do 100 k=1, km
do 200 j=3,jm2
do 200 i=3,im?2
z(i,j, k) =x(i,j,k)y +y(i,j,k)
200 conti nue

do 210 j=1,2
do 210 i=1,im
z(i,j,k) =0

210 conti nue

do 220 jsfm1,jm
do 220 i=1,im
z(i,j,k) =0
220 conti nue

do 230 j=1,jm
do 230 i=1,2
z(i,j,k) =0

230 conti nue

do 240 j=1,jm
1,im

do 240 i=im
z(i,j,k) =0
240 conti nue

100 conti nue
CSVS$PARALLEL END

In this code fragment, notice that the trandated version of loop 210 would only be
executed on processes that contain global indices j =1 or j =2. The PARALLEL
directive ensures that other processes will skip loop 210. Similar translations will occur
for the other loops.
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Recall the syntax seen on lines 19-22 of Example 3-4.

CSMB$PARALLEL(dh, , <j>) BEG N
do k = 1, km
doj =1, jm

It indicates that no enclosed loops correspond to the first decomposed dimension but any
loops that use index j correspond to the second decomposed dimension and should be
translated.

There is no run-time performance penalty for using a PARALLEL directive because
processes are not synchronized. Also, PARALLEL directives may enclose any valid
Fortran executable statements. Therefore, a program that uses only one decomposition
will usually require no more than one BEGIN-END pair of PARALLEL directives for
each program unit (subroutine, function, or main program).

In tagging loop indices to be trandated, some care is required. First, indices can
sometimes be used for non-decomposed loops as well as for loops that span decomposed
dimensions. Thisisthe casein the following fragment:

CSMS$PARALLEL ( DECOVP_I J, <i >, <j>) BEA N
do 200 k=1, km
do 200 j=1,jm
do 200 i=1,im
z(i,j, k) =x(i,j, k) +y(i, j, k)
200 conti nue
do 500 i=1,3
call smooth(z)
500 conti nue
CSVMS$PARALLEL END

In this case, loop 500 is used to repeatedly call subroutine snmoot h which performs some
computations on decomposed array z. This loop should NOT be trandlated because i is
being used as an iteration count, not as an index into a decomposed dimension. Thisis
easily fixed either by using a different loop index in loop 500, by moving the
PARALLEL END directive to exclude loop 500, or by placing the loop inside an
IGNORE directive as shown below in order to tell SMS not to trans ate the loop

CSMS$1 GNORE BEG N
do 500 i =1, 3
call smooth(z)
500 conti nue
CSNVB$1 GNORE END

Second, make sure that all loops manipulating decomposed arrays are enclosed inside
PARALLEL directives. During trandation, PPP will generate a warning message
whenever it finds a loop that is not enclosed by PARALLEL directives if that loop
contains a decomposed array:

Thi s variabl e, deconposed by CSMS$DI STRI BUTE, is being used outside of a
paral | el region.



3.8 Arrayswith Non-Unit Lower Bounds

When arrays in the serial code are declared with non-unit lower bounds, the SMS
decomposition must reflect thisfact. Consider the following variant of Example 3-1:
[Include file: deconp_ex6.inc]

integer im jm km

comon /sizes _com im jm km
CSMS$DECLARE_DECOVP( DECOVP_| J” @ <0, 0>)
[ Source file: deconp_ex6.f]

pr ogram deconp_ex6
i ncl ude ' deconp_ex6.inc

im= 15
jm= 10
km= 2

CSMB$CREATE_DECOVP(DECOWP_IJ, <im jme, <0, 0>)
call conpute
end

subroutine conpute

i ncl ude ' deconp_ex6.inc

integer i, j, k
CSMS$DI STRI BUTE( DECOWP_1 J, <inp, <jmp) BEG N

integer z(0:im21,0:jm1,0:km1), zsum
CSMS$DI STRI BUTE END

do 100 j =0, j
do 100 i =0,i
z(i,j,k) =1
100 conti nue
zsum = 0

do 200 k=0, km1
do 200 j=0,jm1
do 200 i=0,im1
zsum = zsum + z(i,j, k)
200 conti nue

CSMS$PARALLEL END
CSMS$REDUCE( zsum  SUM
print *,'zsum=",zsum
return
end

In this program, array z is declared so the first index (lower bound) is zero in each
dimension instead of the Fortran default of one. The bounds of loops 100 and 200 now
start at zero. The only difference between the directives in this example and those in
Example 3-1 is DECLARE_DECOMP. The new final argument, <0, 0> indicates that
array declarations have alower bound of zero in both decomposed dimensions.



4 Trandating Array Indices

We have seen that, in static memory models, local and global indices are different
whenever more than one process is used so conversions between them are required.
TO_GLOBAL (Section 4.1) and TO_LOCAL (Section 4.2) provide support for these
conversions. In addition, it is sometimes desirable to generate process-local loop start
and end indices and array sizes to ssimplify parallelization of subroutines in both dynamic
and static memory codes. The TO_LOCAL (Section 4.3) directive does this as well.
Finally, boundary condition calculations must be restricted to processes containing
boundary points. GLOBAL_INDEX (Section 4.4) handles these cases.

4.1 Trandating Local Indicesto Global Indices

For a static memory code, when a loop has been trandated using the PARALLEL
directive, the value of the index is now process-loca as illustrated in Figure 3-4. If the
intent of the program is to access the global value, this index will need to be trandated
back to aglobal value. Thispointisillustrated in Example 4-1.

program tran_i ndexl
implicit none

i nteger i, j

integer, paranmeter :: im
integer, paranmeter :: jm

i 5
i 3
CSMS$DECLARE_DECOVP( DECOVP_I J,  <i m

AT

j )

CSMS$DI STRI BUTE( DECOWP_1 J, <inmp, <jnmr) BEG N
integer x(imjm
CSMS$DI STRI BUTE END

CSMS$CREATE _DECOVP(DECOMP_|J, <im jnp, <0, 0>)
CSMVB$PARALLEL( DECOWVP_I J, <i >, <j>) BEGA N

do 100 j=1,jm

do 100 i=1,im

x(i,j) = (100 * i) + ]
100 conti nue

NRPRRRRRRR R
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21 CSMS$SERI AL BEG N

22 doj =1, jm

23 wite(*,'(16i5)") (x(i,j),i=1,im
24 end do

25 CSMS$SERI AL END

26 CSNMS$PARALLEL END

27

28 end

Example 4-1: An SM S parallel program that incorrectly initializesthe array x inside subroutine
conput e.

This program initializes array x in loop 100 (lines 16-19). Each element of array x is

then printed on the screen. When the serial code is run, the following is printed on the
screen:
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>> tran_i ndex1
101 201 301 401 501
102 202 302 402 502
103 203 303 403 503

The same result is seen when the SMS version is run on one process. However, the
results are incorrect when two processes are used:

>> spsRun —np 2 tran_i ndex1_sms
101 201 301 101 201
102 202 302 102 202
103 203 303 103 203

Why are the results incorrect? The PARALLEL directive has trandated the i and |

indices used to compute x in loop 100 using local indices. However, correct operation
requires that x be initialized using global indices as in the original serial code. The
solution is to use the TO_GLOBAL directive to trandate the local indices to global
indices. Inthiscase, line 18 would be replaced with the following code:

CSMB$TO GLOBAL(<1,i >, <2,j>) BEG N
X(i,j) = (100 * i) + ]
CSMB$TO GLOBAL END

The first argument in the TO_GLOBAL directive, <1, i >, indicates that array index i
is an index in the first decomposed dimension. The second argument, <2, j >, indicates
that array index j is an index in the second decomposed dimension. All occurrences of
indicesi andj inside the TO_GLOBAL directives that are not array references will be
converted to their global equivalents in the first and second decomposed dimensions,
respectively. Running the new paralel code on various numbers of processes will now
yield the same result as the serial run.

Note that the TO GLOBAL directive must appear within a PARALLEL directive.
Directives TO_LOCAL and GLOBAL_INDEX, introduced later in this section, also have
this restriction. Also note that since x is decomposed, the SERIAL directive is required
to handle the write statement on line 24 as will be explained in Section 8.

4.2 Trandlating Global Indicesto Local IndicesInside L oops

Sometimes, indices that have been translated to global values need to be translated back
to local values to be used as indices into decomposed arrays in a static memory code.
The TO_LOCAL directive is used for this trandation. Consider the following code
fragment that uses computed indices to avoid out-of-bounds references:

CSMB$PARALLEL( DECOWP_I J, <i>, <j>) BEG N
do j=1,jm
do i=1,im

CSMS$TO GLOBAL(<1,i>) BEGA N
CSMB$TO LOCAL(<1,intl,ipl>) BEGAN

iml = max( 1,i-1)

ipl = min(imi+l)
CSMS$TO_LOCAL END
CSMS$TO_GLOBAL END
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x(i,j) =y(i,j) - y(inmtj) - y(iplj)
end do

end do
CSVS$PARALLEL END

The max and min functions compare index i with global index values 1 and i m
Therefore, the TO_GLOBAL directive must be used. The TO _GLOBAL directive will
convert i -1 and i +1 to globa values so i p1 and i ml will be computed as global
indices. However, i pl and i mlL are then used as indices into decomposed array X, so
they must be converted back from global to local values to avoid out-of-bounds array
references for multi-process runs. The TO_LOCAL directive shown accomplishes this.
The first argument in the TO_LOCAL directive, <1, i mL, i p1>, indicates that array
indicesi mlL and i p1 are both used in loops that span the first decomposed dimension.
In this example, occurrences of either index in code enclosed by the TO LOCAL
directives that are not array references will be converted to their local equivalents in the
first decomposed dimension.

4.3 Using TO_LOCAL to Generate Process-L ocal Sizesand L oop
Bounds

In many models, large sections of code contain no dependencies that require
communications (typically weather model physics routines). If the array bounds and loop
limits are passed into these routines, SM'S provides a means to parallelize them without
inserting directivesinto the code. Example 4-2 shows such a case.

program AVO D _DI RECTI VES
inmplicit none

i nteger i

i nteger, paraneter :: im= 8

CSMS$DECLARE_DECOVP( dh, 1)

i nteger istart, iend
CSMS$DI STRI BUTE(dh, 1) BEG N

i nteger, allocatable :: x(:), y(:)
CSMS$DI STRI BUTE END
CSMB$CREATE_DECOVP( dh, <imp, <2>)

al l ocate(x(inm)
al l ocate(y(im)
x =0.0
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CSMS$PARALLEL (dh, <i >) BEG N

21

22 do i=1,im

23 CSMS$TO GLOBAL(<1,i>) BEGA N
24 x(i) =

25 CSMS$TO GLOBAL END

26 end do

27

28 y = 0.0

29

30

31 csms$to_local (<1, istart : |bound> <1, iend : ubound>) begin
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32 istart =1

33 i end =im- 1

34 csms$to_l ocal end

35

36 call physics(x, |bound(x, 1), ubound(x,1), istart, iend, y)
37

38 CSMS$SERI AL BEG N

39 wite(*,'(8i5)") (y(i),i=1,im

40 CSMS$SERI AL END

41

42 CSMS$PARALLEL END

43 end

44

45 subroutine physics(arr_in, i _memstart, i_memend,
46 & dim_start, dinl_end,
47 & arr_out)

48 inmplicit none

49 integer i _nemstart, i_nemend

50 integer arr_in(i_nmemstart:i_nmem end)

51 i nteger dinl_start, diml_end

52 integer arr_out(i_nemstart:i_rmem end)
53

54 i nteger i

55 doi =dinl_start, diml_end

56 arr_out(i) = 2.0%arr_in(i)

57 end do

58 return

59 end

Example 4-2: Sample code that showshow TO_L OCAL can be used to passlocal array bounds and
start/end loop limitsto subroutines so that no directives need to be added to them.

Program AVO D_DI RECTI VES calls subroutine physi cs (line 36), passing the arrays
x andy, the starting and ending addresses of those arrays, and the starting and ending
loop limits (i start, i end) over which the loops in physi cs will span. The
TO_LOCAL directive at lines 31-34 converts the dimensions and loop limits to their
process local values. During source code trandation, the syntax <1, istart : lbound>
causes replacement of instances of i st art with the local index of the first interior point
for the first decomposed dimension for the given process. Figure 4-1 shows all the sizes
and bounds for this case, assuming the program is run on 2 processes.

The result is that, inside subroutine physics, i_nmemstart, i _nmemend,
dinml _start, diml_end, dinR2 _start, and di n2_end al have the correct
process-local values. Consequently, subroutine physi ¢s produces the right answer for
any process decomposition, even though it contains no SMS directives.
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Figure4-1: Processlayout and memory boundsof arraysarr _i n and arr _out and loop bounds
for a 2-processrun of Example 4-2.

4.4 Using Global Index to Handle Boundary Conditions

Consider the following code fragment that is enclosed in a PARALLEL directive but is
not inside aloop:

5
4
,jd) = 10

d
d
(i

o Il Il

i
J
X
The following use of TO_LOCAL would be incorrect:

CSMB$TO LOCAL(<1,id>, <2,jd>) BEG N
id=5
jd =4

CSMB$TO LOCAL END
x(id,jd) = 10

Thetrandation of i d andj d from global valuesto process-local values will work fine on
the process that "owns" global point ( 5, 4) . However, the trandation will be erroneous
on processes that do not own global point (5, 4) because there is no valid loca
equivalent of these global coordinates on those processes. In order to restrict the
execution of these statements to the process that owns the data, the GLOBAL_INDEX
directive must be used as shown below:

id 5

jd = 4
CSMB$GLOBAL | NDEX( 1, 2) BEG N

x(id,jd) = 10
CSMB$GLOBAL_| NDEX END
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The GLOBAL_INDEX directive ensures that the execution of the enclosed assignment
statement will only be permitted on the process that owns the global point (i d, j d). In
addition, if index trandation is needed, i d and j d will be translated to process-local
equivalents. The first argument in the directive, 1, indicates that all array indices
corresponding to the first decomposed dimension are affected. The second argument, 2,
indicates that all array indices corresponding to the second decomposed dimension are
affected.

Consider the following example that initializes the boundaries of an array that is
decomposed in two dimensions:

subroutine conpute(imjm
integer imjm
CSMs$DI STRI BUTE(DECOWP_1 J, <ime, <jnp) BEG N
integer x(imjm
CSMS$DI STRI BUTE END

i nteger i,

CSNB$PARALLEL(DECONP 1J,<i><j> BEGN
do 100 j=1,jm
do 100 i—1|

X(i,j) = (100 * i) + ]
100 conti nue
do 110 j=2,jm1
CSMS$GLOBAL_| NDEX(1) BEG N
x( 1,j) =0
X(imj) =0
CSMS$GLOBAL_| NDEX END
110 conti nue
do 120 i=2,im1
CSVS$CGLOBAL _| NDEX(2) BEG N
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x(i, 1) =0
21 x(i,jm =0
22 CSMS$GLOBAL_ INDEX END
23 120 conti nue
24 CSMS$GLOBAL INDEX(l 2) BEG N
25 x( 1, 1) =
26 x(|n] 1) = O
27 x(1,jm =0
28 x(imjm =0
29 CSMS$GLOBAL_ INDEX END
30
31 CSMS$PARALLEL END
32
33 CSMS$SERI AL BEG N
34 print *," ARRAY x:
35 print * X
36 CSMB$SERI AL END
37 return
38 end

Example 4-3: An SM S subroutinethat illustratesthe use of the GLOBAL _INDEX directiveto
initialize array boundaries.

This subroutine initializes array x asin previous examples (lines 8-11). It isassumed this
is a dynamic memory code so TO_GLOBAL is not required. It then proceeds to set the
boundary values of x to zero in lines 12 through 28. Three pairs of GLOBAL_INDEX
directives handle the necessary trandations. The first pair deals with global indices 1 and
i min loop 110 while the second pair deals with global indices 1 and j min loop 120.
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The third pair handles global indices in the four assignment statements on lines 25
through 28. In each case, the enclosed statements are only executed on the appropriate
processes. The SERIAL directive on line 33 will be discussed in Section 8.

When the serial and parallel codes are run, the following is printed on the screen
(assuming values of i mand j masin previous examples):

ARRAY Xx:
0 0 0 0 0
0 202 302 402 0
0 0 0 0 0
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5 Handling Adjacent Dependencies
5.1 Further Detailson EXCHANGE

In Section 2.5, we saw how the EXCHANGE directive was used to implement
communications needed to resolve adjacent dependencies for a simple one-dimensional
decomposition. In this sub-section, we expand on that discussion by examining the
treatment of two-dimensional decompositions and larger stencils, and by discussing other
miscellaneous details about EXCHANGE.

5.1.1 Using EXCHANGE in the Case of Two-Dimensional Decompositions

We begin by modifying the Laplace program (Example 2-4) introduced in Section 2.5 so
that a two dimensional decomposition is used. Two-dimensional data decompositions
allow parallel programsto scale to alarge number of processes.

program basi c_ex_2d_deconp
i ncl ude ' basic.inc'
im= 10
jm= 10
CSMS$CREATE_DECOVP(DECOVP_|, <imjnmp, <1,1>)
call | aplace
end

subroutine | apl ace

i ncl ude 'basic.inc'

integer i, j, iter

real nax_error

real tolerance

paranmeter (tolerance = 0.001)
CSMs$DI STRI BUTE(DECOWP_|, 1, 2) BEA N

real f(imjm, df(lmjlﬁ
CSMB$DI STRI BUTE END
CSVB$PARALLEL( DECOWP_ |, <i >, <j>) BEGN
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do 100 j=1,jm
do 100 i=1,im
21 f(i,j) =0.0
22 100 conti nue
23 do 110 j=1,jm
24 CSMS$GLOBAL_| NDEX(1) BEA N
25 f( 1,j) = 2.0
26 f(imj) =20
27 CSMS$GLOBAL_| NDEX END
28 110 conti nue
29 do 120 i=1,im
30 CSMS$GLOBAL INDEX(2) BEG N
31 f(i, 1) = 2.0
32 f(i,jm =2.0
33 CSMS$GLOBAL | NDEX END
34 120 conti nue
35 iter =0
36 max_error = 2.0 * tol erance
37 Cmain iteration |oop..
38 do while ((max_error .gt. tolerance) .and. (iter .l1t. 1000))
39 iter =iter + 1
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40 max_error = 0.0

41 CSMBSEXCHANGE( f)

42 do 200 j=2,jm1

43 do 200 i=2,im1

44 df (i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) +
45 & f(i,j+1)) - f(i,j)

46 200 conti nue

47 do 300 j=2,jm1

48 do 300 i=2,im1l

49 if (max_error .lIt. abs(df(i,j))) then
50 max_error = abs(df(i,j))

51 endi f

52 300 conti nue

53 CSMS$REDUCE( max_error, MAX)

54 do 400 j=2,jm1

55 do 400 i=2,im1

56 fCi,j) =f£(0,)) +df(i,j)

57 400 conti nue

58 enddo

59

60 CSMS$PARALLEL END

61 print * 'Solution required ',iter,' iterations
62 print *, '"Final error ="', max_error

63

64 return

65 end

Example 5-1: Two-dimensional decomposition version of Example 2-4

The CREATE_DECOMP directive now lists two decomposed dimensions (with global
sizesi m andj m). The halo width for each dimensionis 1 in this case. Asdiscussed in
Section 3.2, the DISTRIBUTE, PARALLEL, and GLOBAL_INDEX directives are
modified to handle the 2-D decompositions. Although the communication patterns
required to support 2-dimensional decompositions are more complex than the 1-
dimensional case, SMS hides al of these details. Thus, the EXCHANGE directive is
unchanged. Figure 5-1 shows some sample stencils overlaid on a 3x3 process
decomposition of the problem. The stencil centered at global coordinate ( 3, 2) only
requires P1 communicate with P2. However, the stencil centered at globa coordinate
(4, 4) requires P5 communicate with both P2 and P4. Figure 5-2 and Figure 5-3 show
the full communications pattern for a 2-D exchange. Notice that the corner halo points of
the center process are filled with data from the corresponding corner processes in the
drawings.
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Figure 5-1: Sample stencils overlaid on a 3x3 process decomposition for the Laplace problem. The
halo regions are the shaded areas. The white boxes are referred to as the "interior" of each
process's sub-domain.



BEFORE EXCHANGE
P8

Figure5-2: Schematic of how data are distributed among 9 processesjust prior to an exchange
operation. The big boxes contain theinterior data. The boxes on the edges arethe halo regions.
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AFTER EXCHANGE

P7 P8 P9

Figure5-3: lllustration of the data distribution just after a 2-dimensional exchange for a problem
with non-periodic boundaries.

5.1.2 Larger Stencils

In Figure 2-10, the widths of the stencil for the calculation of df in the laplace program
are one point in each direction. Since this is the only computation in Laplace requiring
"exchange", it is clear that the halo widths specified by CREATE_DECOMP must be 1 in
the i dimension (line 5). However, suppose we modify Example 2-4 by adding
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additional calculations of x that step 2 points into the halo region (lines 60-64 in Example
5-2 below).

pr ogram basi c_ex_hal 02
i ncl ude ' basic.inc'
im= 10
jm= 10
CSVS$CREATE _DECOVP( DECOVP_I, <inp, <2>)
call | aplace
end

subroutine | apl ace

i ncl ude 'basic.inc'

integer i, j, iter

real nmax_error

real tolerance

paranmeter (tolerance = 0.001)
CSMs$DI STRI BUTE( DECOVP_I, <imP) BEA N

real f(imjm, df(lmjlﬁ
CSMs$DI STRI BUTE END
CSMS$PARALLEL ( DECOWP_I , <i >) BEG N

do 100 j=1,jm
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do 100 i=1,im
21 f (i,j) =0.0
22 df(i,j) =0.0
23 100 conti nue
24 do 110 j=1,jm
25 CSNS$GLCBAL_INDEX(1) BEG N
26 f( 1,j) = 2.0
27 f(i n]J) =20
28 CSMS$GLOBAL_ INDEX END
29 110 conti nue
30 do 120 i=1,im
31 f(i, 1) = 2.0
32 f(i,jm =2.0
33 120 conti nue
34 iter =0
35 max_error = 2.0 * tol erance
36 Cmin iteration |oop..
37 do while ((max_error .gt. tolerance) .and. (iter .l1t. 1000))
38 iter = iter + 1
39 max_error = 0.0
40 CSMB$EXCHANGE( f)
41 do 200 j=2,jm1
42 do 200 i=2,im1
43 df (i,j) = 0.25* (f(l-l j)y + f(i+1,j) + f(i,j-1) + f(i,j+1))
44 & - f(i,])
45 200 conti nue
46 do 300 j=2,jm1
47 do 300 i=2,im1l
48 if (max_error .lIt. abs(df(i,j))) then
49 max_error = abs(df(i,j))
50 endi f
51 300 conti nue
52 CSMS$REDUCE( max_error, MAX)
53 do 400 j=2,jm1
54 do 400 i=2,im1
55 fCi,j) =1f(0,j)) +df(i,j)
56 400 conti nue
57 enddo
58
59 CSMS$EXCHANGE( df )
60 doj =1, jm
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61 doi =3, im2

62 f(i,j) =f(i,j) +2.0*df(i,j) - df(i-2,j) - df(i+2,j)
63 end do

64 end do

65

66 CSMS$PARALLEL END

67 print *, '"Solution required ',iter,' iterations'

68 print *, '"Final error ="', max_error

69

70 end

Example 5-2: M odified version of Example 2-4 with additional code that has a stencil width of 2in
thei direction.

For the calculations starting at line 60, the width of the stencil is 2 in thei direction as
shown in Figure 5-4.

df2(i,j) = 2.0%df(i,j) - df(i-2,j) - df(i+2,j)

New Stencil New Stencil
Point df (i) Point

v ) v

df (i-2,j) @—@—@—@—@ df(i+2,j)

Figure5-4: Madified stencil for additional calculationsin Example 5-2. Thistimethe stencil width is
2inthei direction

This program now has two caculations involving the same dimension of the same
decomposition with different stencil widths. SMS handles this by requiring the
programmer to make the halo width of the decomposition equal to the larger of the two
widths. It is up to the programmer to determine the width of the largest stencil required
in each dimension for every decomposition. The CREATE_DECOMP directive (line 5)
shows the correct halo width specification (<2>).

5.1.3 Exchangesin Static Memory Models

For static memory models that require exchanges, the process-local array sizes specified
in the DECLARE_DECOMP directive must be large enough to include the halo regions.
In the program fragment below, the halo sizeis one. Since halo regions are on each side,
the declared local array size is the global size (i m) divided by the number of processes
(4) plus 2 to accommodate the halo regions and plus 1 since 4 does not divide 30 evenly.

program STATI C_MEMORY_EXCHANGE
implicit none

integer im

paraneter (i m= 30)
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i nteger jm
paranmeter(jm= 5)
CSMS$DECLARE_DECOVP(ny_dh, <im4 + 2 + 1>)

5.1.4 Miscellaneous

Another point about EXCHANGE is that, for both static and dynamic memory models,
the number of processes used must be small enough to ensure the size of the smallest
interior region is greater than the halo width in each decomposed dimension. SM'S will
issue the following run-time error message if this condition is violated:

Process: O Error status= -2100 MSG |I'S: NNT_DECOVP_ERR

Also, we point out that EXCHANGE automatically implements the process
synchronization required for the parallel code to produce correct results. A process
scheduled to receive data from a neighbor will wait until the data have fully arrived
before proceeding with the next set of calculations. A side effect of this synchronization
is that the EXCHANGE directive cannot be used inside a decomposed loop because the
number of iterations may not be the same on every process, causing deadlock.

5.2 Performance Optimizations

In this section, some optimizations are described that can be employed to reduce the
number of exchanges and the amount of data exchanged in aparallel SMS program.

5.2.1 Limited-Thickness Exchanges

Choosing a single halo width could mean some data are communicated unnecessarily.
The exchange at line 40 in Example 5-2 is an example of such inefficiency. The stencil
of the computations in loop 200 is still one point wide inthei direction. However, since
the halo width of f isnow 2 in this dimension, one extra halo point on each side for each
j index will be communicated unnecessarily. This extra communication can be
eliminated by using a variant of the EXCHANGE directive that only exchanges part of
the halo region:

CSMB$EXCHANGE(f <1, 1>)

This option to EXCHANGE tells SMS to exchange only the first halo point in the lower
and upper halo regions.

If we were to modify Example 5-2 to use a two dimensiona decomposition, the
CREATE_DECOMP directive would look as follows:

CSNMB$CREATE_DECOVP( DECOMVP_| J, <imjnmp, <2, 1>)

Now, the maximum stencil width is 2 in the first decomposed dimension (for the
exchange at line 59) and 1 in the second decomposed dimension (for the exchange at line
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40). If the exchange at line 40 only requires 1 point in each direction, it could be
optimally written as:

CSMBSEXCHANGE(f <1, 1> <1, 1>)

Since the exchange at line 59 is only needed to update pointsin thei dimension, it would
optimally be written as:

CSMB$EXCHANGE( df <2, 2> <0, 0>)
5.2.2 Aggregating Exchanges

The program SLOW in Example 5-3, uses a dstatically declared one-dimensional
decomposition (line 10) to distribute the arrays a, b and c. In this example, a halo
thickness of one is defined by CREATE_DECOMP (line 24). After a series of iterations
(line 39) agloba sum is produced with the REDUCE directive (line 63).

program SLOW
inmplicit none

i nteger im
paraneter (i m= 30)
integer jm

paranmeter(jm= 5)
i nteger iterations
paraneter(iterations = 3)

CSMS$DECLARE_DECOMP(ny_dh, <im 3 + 2>)

CSMS$DI STRI BUTE( ny_dh, <inp) BEA N
real a(im
real b(imjm
real c(imjm

CSMs$DI STRI BUTE END
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real ysum
i nteger i
21 i nteger |
22 i nteger iter
23
24 CSMB$CREATE_DECOVP(ny_dh, <inmp, <1>)
25
26 ysum = 0.0
27 = 0.0
28 c =0.0
29
30 doj =1, jm
31
32 CSMS$PARALLEL(ny_dh, <i>) BEG N
33 doi =1, im
34 CSMB$TO GLOBAL(<1, i>) BEGAN
35 a(i) =real (3*i +2 +j)
36 CSMS$TO GLOBAL END
37 end do
38
39 do iter =1, iterations
40
41 CSMS$EXCHANGE( a)
42
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43 doi =2, im1l

44 b(i,j) = a(i+1) + a(i-1)
45 c(i,j) =b(i,j) +c(i,j)
46 end do

47

48  CSNMB$EXCHANGE( b)
49  CSMB$EXCHANGE( c)

50

51 doi =2, iml

52 a(i) =b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)
53 end do

54

55 end do

56

57 doi =2, im- 1

58 ysum = ysum + a(i)

59 end do

60

61 end do

62

63 CSMS$REDUCE(ysum SUM

64

65 print *, 'ysumis ', ysum
66 CSMS$PARALLEL END

67 end

Example 5-3: A sub-optimal version of a program parallelized using SM S.

SMS provides the capability to aggregate the exchanges of multiple variables. If lines
48-49 are replaced with

CSMB$EXCHANGE( b, )

then SMS will combine the communications of the corresponding halo regions of b and ¢
as shown in Figure 5-5. Since the number of messages sent is halved, performance on
high-latency machines will improve.

61
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M essage
Buffer

Figure 5-5: Anillustration of how communications are aggregated to reduce latency for a portion of
the exchange of a and b. The last column of process P1's variables are communicated as a single
message to P2 where they are unpacked into the corresponding halo regions.

5.2.3 Exchanging Array Sections

Sometimes, it is not necessary to exchange an entire array. For example, in the following
code fragment an adjacent dependence may only apply to some of the vertical levels of a
3D array:

CSMB$DI STRI BUTE( DECOVP_1 J, <ime, <jnp) BEG N
real x(imjmkm
real y(imjmkm

CSMS$DI STRI BUTE END
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CSMB$EXCHANGE( x <0, 1> <0, 0>)

do 100 k = 1,2
do 100 j =1,im
do 100 i = 1,im
y(i,j, k) =x(i+1,j,k) — x(i,j,k)

100 conti nue

However, the exchange directive will exchange array x at al k levels even though the
dependence exists only for k=1 and k=2. This exchange directive can be optimized
using standard Fortran array syntax as shown below:

CSMS$EXCHANGE( x(:, :,1:2) <0, 1> <0, 0>)

Now, only the k=1 and k=2 levels of array x will be exchanged. Note that use of array
section syntax will only improve performance for subsections in non-decomposed
dimensions.

5.2.4 Trading Communicationsfor Computations Usng HALO_COMP

Example 5-3 can be further optimized by trading communication for redundant
computations in the halo region as is briefly discussed in the SMS overview paper. This
is done using the HALO_COMP directive to modify the ranges of parallel loops to
include computations in the halo regions. These extra computations can eliminate the
need for some exchanges.

Figure 5-6, Figure 5-7, and Figure 5-8 illustrate how redundant computations work.
Without the HALO_COMP directive, b and ¢ are only computed in interior points
using stencils like that shown in Figure 5-6. Halo regions of b and ¢ must then be
updated via an exchange for a to be properly computed as shown in Figure 5-7. A
computation one step into the halo region (Figure 5-8) requires that a have a halo size of
two instead of one. Since process P1 now computes points such as b(4, 2) and
c(4, 2), the computation of a( 3, 2) shown in Figure 5-7 can proceed without having
exchanged b and c. However, extra computations are done since process P2 must also
perform exactly the same computation for its corresponding interior points b( 4, 2) and
c(4,2),

Use of the HALO COMP directive in this example reduces latency because the
exchanges of b and ¢ are no longer required. In addition, communication bandwidth is
reduced. Although the amount of data communicated by the exchange of a has doubled,
thisis more than offset by the elimination of the exchanges of b and c.
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Figure 5-6: Memory layout of a (assuming i m=9, j m=3) with sample stencil for calculations of b
and c overlaid.
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Figure 5-7: Memory layout of b and ¢ with sample stencil for calculation of a overlaid. The halo
regionsof b and ¢ must be updated via exchange for the calculation of a to be executed correctly.
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Figure5-8: Modified memory layout of a with new sample stencil centered in the haloregion. The
computation of point b( 4, 2) and c(4, 2) effectively updatesthe haloregionsof b and ¢ sothat the
computation of a in Figure 5-7 can be made without an exchange.

A net improvement in performance by this technique will only be realized if the cost of
the additional computation by each process is less than the cost of exchanging b and c.
Whether or not the code runs faster will, in general, depend on the communication
patterns in the program, the number of processes used, and the target hardware platform.

A version of Example 5-3 that implements redundant calculations is shown in Example
5-4. The HALO_COMP directive on line 43 tells SMS that the enclosed loop should be
executed 1 step into the halo region in each direction. This updates b and ¢ sufficiently
to satisfy the dependencies in the loop at lines 52-54. DECLARE_DECOMP and
CREATE_DECOMP have been modified to accommodate the new halo size of 2. The
exchanges of b and ¢ have been eliminated.

1 program FASTER

2 implicit none

3 i nteger im

4 paraneter (i m= 30)

5 i nteger jm

6 paraneter(jm= 5)

7 i nteger iterations

8 paranmeter(iterations = 3)

9
10 CSMS$DECLARE DECOVP(ny_dh, <im 3 + 4>)
11
12 CSMS$DI STRI BUTE( ny_dh, <inmk) BEA N
13 real a(im
14 real b(imjm
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15 real c(imjm
16 CSMS$DI STRI BUTE END

17

18 real ysum

19

20 i nteger i

21 i nteger |

22 i nteger iter

23

24 CSMB$CREATE _DECOVP(ny_dh, <inmpk, <2>)
25

26 ysum = 0.0

27 b=0.0

28 c =0.0

29

30 doj =1, jm

31

32 CSMB$PARALLEL(ny_dh, <i>) BEG N
33 doi =1, im

34 CSMB$TO GLOBAL(<1, i>) BEGAN

35 a(i) =real (3*i +2 +j)
36 CSMS$TO GLOBAL END

37 end do

38

39 do iter =1, iterations
40

41 CSMS$EXCHANGE( a)

42

43 CSWVMS$HALO COWP(<1, 1>) BEG N

44 doi =2, im1

45 b(i,j) = a(i+l) + a(i-1)
46 c(i,j) =b(i,j) +c(i,j)
47 end do

48 CSMS$HALO COVP END

49

50

51

52 doi =2, im1l

53 a(i) =b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)
54 end do

55

56 end do

57

58 doi =2, im- 1

59 ysum = ysum + a(i)

60 end do

61

62 end do

63

64 CSMS$REDUCE(ysum SUM

65

66 print *, 'ysumis ', ysum
67

68 CSMS$PARALLEL END

69

70 end

Example 5-4: A version of Example 5-3 that has been optimized by trading communications for
redundant calculationsin the halo region.
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525 UsingHALO _COMP and TO_LOCAL To Make Subroutines Do

Redundant Computations

We saw in Section 4.3 how the TO_LOCAL directive can be used to paralelize
subroutines without requiring directives inside the subroutine code. The approach works
by making the subroutines operate on the interior of the process local arrays. Now,
suppose we want those called routines to do redundant computations in the halo region to

avoid communication.

illustrating how thisis done.

CoOo~NOUITRhWNE

program tran_i ndex?7

inmplicit none

i nteger i

i nteger, paraneter :: im= 8

CSMBS$DECLARE_DECOWP(dh, 1)
i nteger istart, iend

CSMs$DI STRI BUTE(dh, 1) BEGA N
i nteger, allocatable :: x(:), y(:), z(:)
CSMVB$DI STRI BUTE END

CSMB$CREATE_DECOVP( dh, <imp, <2>)

al | ocat e( x(
al l ocat e(y(
al | ocat e( z(
x =0.0

CSMB$PARALLEL( dh, <i >) BEG N

im)
inm)
im)

CSMS$HALO COWP(<1,1>) BEG N
do i=1,im
CSMS$TO GLOBAL(<1,i>) BEA N
x(i) =i
CSMS$TO GLOBAL END

end do
y =0.0
CSMB$TO LOCAL(<1, istart : |bound> <1, iend
istart =1
i end =im- 1
CSMS$TO_LOCAL END

CSMS$HALO COVP END
call physics(x, |bound(x, 1), ubound(x, 1),
do i 1, im- 1

2(i) = y(i) + y(i+1)
end do

CSMB$SERI AL BEGI N
wite(*,' (8i5)") (z(i),i=1,im
CSMB$SERI AL END

CSVS$PARALLEL END
end
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Example 5-5: M odified version of Example 4-2 that passeslower and upper boundsinto subroutine
physi cs sothat it doesredundant computationsfor one point in the halo region for each dimension
and for each direction.

Since the calculations of i start and i end are now contained within both a
TO_LOCAL and HALO_COMP directive, the effect is to change the lower and upper
bounds passed to the physi c¢s so that it will do redundant computations for one point in
the halo region for each direction. Figure 5-9 shows the new table of lower and upper
bounds (compare to the table in Figure 4-1). Now, following the call to physi cs,
variable y contains valid data one point into the halo region. Consequently, an
EXCHANGE directive is not need prior to the loop at lines 39-41.

Process I_mem start i _mem end diml start diml end
P1 -1 6 1 5
P2 3 10 4 8

Figure5-9: Table of memory and computational boundsfor Example 5-5. Comparethe
di m_start and di ml_end valuestothosethetablein Figure4-1. The memory start and end
values are unchanged.
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6 Handling Complex Dependencies Using TRANSFER

Section 2.7 introduced the TRANSFER directive and explained how it could be used to
handle complex dependencies in more than one dimension (see Example 2-5). In Section
6.1, we show how TRANSFER can be used when either the source or destination array
are non-decomposed. In Section 6.2, we examine how TRANSFER can be applied to the
parallelization of spectral models. TRANSFER is also used for inter-grid interpolation as
described in Section 10.2.

Like EXCHANGE, TRANSFER automatically implements the process synchronization
required for the paralel code to produce correct results. A side effect of this
synchronization is that the TRANSFER directive cannot be used inside a decomposed
loop because the number of iterations may not be the same on every process, causing
deadlock.

6.1 Further Detailsabout TRANSFER

While TRANSFER can be used to generate communications to transpose arrays
decomposed in one or more dimensions, it can also be used when either the source or
destination arrays are not decomposed. If the destination array is not decomposed but the
source is, then the TRANSFER directive effectively implements a “gather” of the source
into the destination as illustrated in Figure 6-1. After the transfer, the entire array is
replicated on each process. Since the local data for each process must be communicated
to all other processes, this operation can be quite expensive.

“source’ II: “destination”

“ sour ce” :> “destination”

Figure 6-1: Schematic of the behavior of TRANSFER when the source array is decomposed and the
destination array is NOT decomposed. The effect is to “gather” the process-local data from the
source array into the globally-sized destination array.
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If the source array is not decomposed but the destination array is decomposed then
TRANSFER performs an "extract" of data from the source into the destination as shown
in Figure 6-2. Note that no communication is needed in this case since each process has
access to al needed data to begin with. Note that the SERIAL directive also performs
“gather” and “extract” operations and is often easier to use than TRANSFER (see Section
8).

“source” “destination”

“source” “destination”

—
)

Figure 6-2: Schematic of the behavior of TRANSFER when the source array is NOT decomposed
and the destination array is decomposed. The effect is to “extract” the appropriate data from the
globally sized source array into the process-local destination array.

As in the case of EXCHANGE, TRANSFERSs can be aggregated as follows to reduce
latency:

CSMB$TRANSFER( <sour cel, destinationl>, <source2, destination2>) BEG N
Serial code to be replaced...
CSMB$TRANSFER END

Note that, for all TRANSFER directives, the type and rank of the source and destination
arrays must be the same. However, the array sizes may differ.

6.2 Applying TRANSFER to Spectral Models

Many spectral models have multiple phases of computation that repeat in a fixed pattern.
Phases often have different optima decompositions. Therefore, performance may be
maximized by using multiple decompositions and transferring between them. Consider
the case of one-dimensional decompositions for these models. The physica
parameterizations contain complex dependencies in the vertical. This makes it efficient
to decompose in one of the horizontal dimensions. At the same time, many computer
system vendors provide highly optimized assembly FFT libraries that far out-perform
anything that can be done with hand-tuned Fortran code.
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Taking advantage of this serial code requires decomposing in a dimension other than i .
Typically, the data are decomposed in the j dimension during physics and FFT
computations (decomposition "a" in Figure 3-1). The Legendre transformations contain
complex dependencies in thej dimension. Therefore, a second decomposition in either
i (decomposition "b" in Figure 3-1) or k (decomposition "c" in Figure 3-1) is needed for
optimal performance during these calculations. The TRANSFER directive provides the
means to transpose the data from decomposition "a' to ("b" or "c") and back again. For
large numbers of processes, 2D decompositions are needed to ensure that all processes
have work to do. In this case, physics computations may be done using decomposition
“d”, FFT computations may be done using decomposition “€’, and Legendre transform
computations may be done using decomposition “f”.
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7 Handling Global Dependencies Using REDUCE

In Section 2.3, we saw how the REDUCE directive was used to implement
communication needed to do global summations and maxima. In this section we examine
the REDUCE directive in more detail. In addition to giving more examples of the
directive, Section 7.1 also shows that the form of REDUCE introduced in Section 2.3.3
(which will be referred to as " Standard Reductions') does not necessarily produce the bit-
wise exact same answer as the serial code for global summations of floating point
numbers. Section 7.2 introduces a second form of REDUCE called "Bit-wise Exact" that
does produce the bit-wise exact same answer, regardiess of the number of processes.
Although quite useful for debugging, the second form has the drawback that it runs
slowly.

Like EXCHANGE, both forms of REDUCE automatically implement the process
synchronization required for the parallel code to produce correct results. A side effect of
this synchronization is that the REDUCE directive cannot be used inside a decomposed
loop because the number of iterations may not be the same on every process, causing
deadlock.

7.1 Moreon Standard Reductions

In addition to global summations and maxima, the REDUCE directive can be used to
generate global minima and to reduce arrays as seen in Example 7-1. Global minima are
generated by specifying the keyword M N (line 52). Also notice that reductions can be
aggregated in the same way as exchanges (line 50). One of the variables reduced is the
non-decomposed array xsum (line 50). The summation of xsum looks like the
following:

Xsum gl obal (1)
Xsum gl obal (2)

Xsum local, (1) + Xsum.local, (1) + ...
Xsum_local, (2) + Xsumlocal, (2) + ...

where Xsum | ocal (j) is the value of process-local xsun{j) on process P and
Xsum gl obal isthevalue of xsumafter the global summation is complete.

pr ogr am REDUCTI ONS
inmplicit none
i ncl ude 'basic.inc'

im= 50
jm= 2

CSMS$CREATE_DECOVP( DECOVP_I, <i nk, <0>)
call DO THEM

end

e ol el
WNROOONOUTAWN R
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14 subrouti ne DO THEM

15 implicit none

16 i ncl ude 'basic.inc'

17

18 CSMS$DI STRI BUTE( DECOVP_I, <inp) BEG N
19 real x(imjm

20 real y(imjm

21 CSMs$DI STRI BUTE END

22

23 real xsum(jm

24 real ysum

25 real xmn

26 real xmax

27

28 i nteger i

29 i nteger |

30

31 open (10, file="reduce_data', fornm= unformatted')
32 read (10) x, y

33 cl ose(10)

34

35 CSMS$PARALLEL(DECOWP_I, <i>) BEG N
36 xsum = 0.0

37 ysum = 0.0

38 xmax = -999.0

39 xmn = 999.0

40

41 doj =1, jm

42 doi =1, im

43 xsum(j) = xsum(j) + x(i,j)
44 ysum = ysum + y(i,j)

45 xmax = max(xmax, X(i,j))
46 xmin = mn(xmn, x(i,]))
47 end do

48 end do

49

50 CSMS$REDUCE(xsum ysum SUM

51 CSMS$REDUCE( xmax, MAX)

52 CSMS$REDUCE( xmi n, M N)

53

54 print *

55 print *, 'd obal values

56 doj =1, jm

57 wite(*,100) j, xsum(j)

58 end do

59 write(*,150) ysum

60 write(*,200) xmax

61 write(*,300) xmin

62

63 100 format('j ', i2, ' xsum="', F13.5)
64 150 format('ysum= "', F13.5)

65 200 format('xmax ="', F13.5)

66 300 format('xmn = F13.5)

67

68 CSMS$PARALLEL END

69

70 return

71 end

Example 7-1: Program showing additional examples of how the REDUCE directive can be used.

If we were to modify Example 7-1 so that thej dimension is also decomposed and were
to make xsum a decomposed variable, then the reduction of xsumwould FAIL. This
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would happen because SMS does not currently support reductions that produce
decomposed variables. (This would require doing the reduction over a subset of the
jprocesses.)

When run with 2 processes, program REDUCTIONS yields the following results:

d obal val ues
j 1 xsum = 1258. 28589
J 2 xsum= 1310. 71448
ysum - 2464. 28540
Xmax 100. 00000
Xmn -100. 00000

However, when run with 4 processes, the results are:

G obal val ues
j 1 xsum = 1258. 28577
] 2 xsum = 1310. 71436
ysum -2464. 28613
X max 100. 00000
Xmn -100. 00000

Notice that the values for xsumand ysum are dlightly different between the 2 and 4
process runs. We will now see why thisis the case.

7.2 Bit-wise Exact Reductions

The differences in results in Example 7-1 are due to round-off error in the floating-point
addition. The numbers are added in a different order in the 4-process case as compared
to the 2-process case because the sums are first computed locally before being combined
(see Section 2.3.3). In weather and climate models (which are non-linear systems), if the
global sums feed back into the main model equations, these dlight errors can grow and
propagate; potentially yielding completely different model predictions for runs with
differing numbers of processes.

For debugging purposes, it is useful to avoid these round-off errors. In fact, this is
necessary for correct operation of the COMPARE_VAR debugging feature (see Section
13.1). To do this, SMS offers a form of REDUCE that produces the bit-wise exact same
answer for any number of processes. Example 7-2 below shows how this works.

progr am EXACT_REDUCTI ONS
inmplicit none

i ncl ude 'basic.inc'

im= 50

jm= 2

CSMS$CREATE_DECOVP( DECOVP_I, <inp, <0>)
call DO _THEM

end

e ol
WNROOONOUITAWNE
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14 subrouti ne DO THEM

15 implicit none

16 i ncl ude 'basic.inc'

17

18 CSMS$DI STRI BUTE( DECOVP_I, <inp) BEG N
19 real x(imjm, y(imjm
20 CSwMs$DI STRI BUTE END

21

22 real ysum

23

24 i nteger i

25 i nteger |

26

27 open (10, file="reduce _data', fornF unfornatted')
28 read (10) x, y

29 cl ose(10)

30

31 CSMS$PARALLEL(DECOWP_I, <i>) BEG N
32

33 CSMS$REDUCE(ysum SUM BEG N
34 ysum = 0.0

35 doj =1, jm

36 doi =1, im

37 ysum = ysum + y(i,j)
38 end do

39 end do

40 CSMS$REDUCE END

41

42 print *

43 print *, 'd obal values
44 write(*,150) ysum

45

46 150 format('ysum= "', F13.5)
47

48 CSMVS$PARALLEL END

49

50 return

51 end

Example 7-2: Program illustrating the bit-wise exact form of the REDUCE directive.

The modified REDUCE syntax can be see on lines 33 and 40. The syntax requires a
BEGIN and END directive. SMS replaces the calculations between the REDUCE
BEGIN and END with code that gathers each process's piece of y into a globally-sized
(replicated) variable and then sums the result in the correct order. Conceptualy, the
generated parallel code would be:

call GATHER(y, y_gl obal)
ysum = 0.0
doj =1, jm
doi =1, im
ysum = ysum + y_gl obal (i,]j)
end do
end do

The "gather" operation is done in the same way as TRANSFER was used to gather
variables as discussed in Section 6.1. Since the gather operation requires communicating
the entire contents of y to all processes, this form of global sum is significantly less
efficient than the "standard" form of reduction. In that case, only the process-local scalar
sums are communicated to all the processes.
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The bit-wise exact form of the REDUCE directive will only produce exact sums if an
environment variable called SMS BITWISE is set to the value EXACT. Running
EXACT_REDUCE in ac-shell environment might look as follows:

>> setenv SMS_BI TW SE EXACT

>> spsRun —np 2 exact _reduce

SMB: BI TW SE EXACT reductions will be used when request ed.
G obal val ues

ysum = - 2464. 28418

Notice that the message printed by SM S regarding reductions now indicates that bit-wise
exact reductions will be used.

If SMS BITWISE is NOT set to EXACT then the effect of the REDUCE directive is the
same as in the "standard” reduction; each process computes a local sum of y and the
resulting scalars are summed across the processes.

>> setenv SMS Bl TW SE | NEXACT

>> spsRun —np 2 exact _reduce

SMS: Standard reductions will be used.
d obal val ues

ysum = - 2464. 28540

In summary, the "bit-wise exact" form of global summation is valuable for testing
purposes, particularly for non-linear systems. Its use is required for correct operation of
the COMPARE_VAR debugging feature (see Section 13.1). However, for long model
runs, when optimal performance is important, the "standard" form of REDUCE will
likely be more appropriate because it is much faster. The programmer can use the bit-
wise exact form of REDUCE in the code and then decide at run-time, with the
SMS BITWISE environment variable, which reduction to use.
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8 Incremental Parallelization Using SERIAL

The SERIAL directive is useful when other SM'S directives cannot be easily applied to a
piece of seria code or when efficient performance is not critical. One example is
initialization. For long model runs, the effects of inefficient code during initialization
become negligible. Diagnostic print messages are another case. If the user can turn off
diagnostic messages when high performance is needed then the presence of inefficient
parallel code that generates these messages does not pose a problem. Another use of
SERIAL isfor incremental parallelization of alarge code. Using this technique, SERIAL
directives are inserted around large sections of code. The directives are then removed
one-by-one as each section is parallelized. This simplifies testing and debugging because
each parallel code section can be tested and debugged separately.

8.1 Improving the Performance of SERIAL

Any code segment enclosed by SERIAL BEGIN and SERIAL END directivesis called a
“seriad region”. When SMS encounters a seria region, it automaticaly gathers all
decomposed arrays on a single process, executes the enclosed code segment on the
process, and scatters all decomposed arrays back to all processes (see Figure 8-1). In
addition, all non-decomposed variables are broadcast to all the processes. By default,
SMS gathers/scatters all decomposed variables and broadcasts al non-decomposed
variables referenced in the serial region. These communications cause the code to run
even more slowly than the original serial code. To improve performance, the user can
specify variables to be scattered, gathered, or broadcast using keywords “I N’, “QUT”, or
“I NOUT” (when both operations are required). Also, when no communication is
required, the “1 GNORE” keyword can be used to suppress communication.
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13 gtha."

SERI AL CCLE. . .

“scatter”

Figure 8-1: Gather and scatter of decomposed data at the beginning and end of a serial region.

In Example 8-1, x and y are decomposed while z is not. The subroutine calls at lines
39-40 read in X and z using C language routines (the C code is not shown). Since C
routines cannot be handled by SMS, the SERIAL directive is used to generate code that
gathersx andy into global variables. A single process then executes the code at lines
39-41. Finaly, the generated code scatters x and y and broadcasts the value of z.
Scalar variables i mand j m are not broadcast since the default is set to “I GNORE".
When high performance is desired, the user can avoid this poorly performing code
segment by setting ENABLE DI AGSto. FALSE. .

[Include file: serial.inc]

1 integer imjm
2 conmon /sizes _com imjm
3 CSMS$DECLARE_DECOVP( DECOVP_| 2)
[ Source file: seriall.f]
1 program SERI AL
2
3 i nclude 'serial.inc'
4
5 i nteger i
6 i nteger |
-
8 im=5
9 jm= 4
10
11 CSMS$CREATE_DECOWP(DECOWP_IJ, <imjnme, <0, 0>)
12
13 call DOIT
14
15 end
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16

17 subroutine DO IT

18 i nclude '"serial.inc

19

20 CSMS$DI STRI BUTE( DECOVP_I J, <inmp, <jnmp) BEG N
21 real x(imjm

22 real y(imjm

23 CSMs$DI STRI BUTE END

24 real z

25 | ogi cal ENABLE DI AGS

26 ENABLE_DI AGS = .true.

27

28 open(10, file="yin', form" unformatted')
29 read(10) vy

30 cl ose(10)

31

32 C Sone parallel conputations

33 C .

34 C

35 C

36

37 i f (ENABLE DI AGS) then

38 CSMB$SERI AL(<x, Yy, INOUT>, <z, OUT> : DEFAULT=I GNORE) BEG N
39 call READ 2D ARRAY USING C(x, im jm
40 cal | READ _SCALAR USI NG C(z)

41 print *, 'y(2,2), z"', y(2,2), z

42 CSMS$SERI AL END

43 end if

44 C More parallel calculations

45 .

46 .

47 return

48 end

Example 8-1: A sample program showing how the SERIAL directive can be used to generate correct
parallel codein a simple fashion when other SM S directives will not suffice.

8.2 Limitationsof SERIAL

Some care must be taken when using the SERIAL directive. First, SMS does not perform
inter-procedural analysis so calling a routine that uses common block variables from
within a serial region can produce erroneous results. Suppose we insert the following
code after line 38 in Example 8-1:

call subl

Further suppose subl1 lookslikethis:

subrouti ne subl
real xc

common /conil/ xc
xc = 2.0

return

end

SMS has no way of knowing that xc has to be broadcast before the end of the serial
region because it does no inter-procedural analysis. A solution here would be to include
/ coml/ insubroutine DO _| T and specify xc asan “OUT” variable in the directive:
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CSMS$SERI AL(<x, vy, INOUT>, <xc, z, OUT> : DEFAULT=I GNORE) BEG N

Second, care must be taken when constants are passed into subroutines that use SERIAL.
In Example 8-2, the constant 2 is passed to subroutine DO | T. Since DO I T callsaC
routine that uses dummy argument n, a SERIAL directive would normally be required to
handle this. However the SERIAL directive generates a broadcast of dummy argument
n, which will attempt to modify its value. Since n is the constant 2, the result will be
unpredictable (with luck, a core dump). This problem can be corrected by using the
“1 GNORE” keyword to ensure that the SERIAL directive will not attempt to broadcast n.

1 program SERI AL

2

3 i nclude 'serial.inc'
4

5 i nteger i

6 i nteger |

-

8 im=5

9 jm= 4

10

11 CSMS$CREATE_DECOWP(DECOWP_IJ, <imjnme, <0, 0>)
12

13 call DO IT(2)

14

15 end

16

17 subroutine DO I T(n)
18

19 i nteger n
20
21 CSMS$SERI AL BEG N
22 call c_routine(n)
23 CSMS$SERI AL END
24
25 return
26 end

Example 8-2: Code where use of the SERIAL directive generates parallel codethat failsto run
properly.

Care must also be taken when using SERIAL in combination with statements that alter
execution sequence (such as IF, GOTO, etc.). To avoid problems, program execution
should only enter a seria region from the statement immediately before the SERIAL
BEGIN directive. Similarly, program execution should only exit a seria region from the
statement immediately before the SERIAL END directive.

Finally, like EXCHANGE, SERIAL automatically implements the process
synchronization required for the parallel code to produce correct results. A side effect of
this synchronization is that the SERIAL directive cannot be used inside a decomposed
loop because the number of iterations may not be the same on every process, causing
deadlock.
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9 Periodic Boundary Conditions

By default, SM'S assumes that models have non-periodic boundary conditions. However,
SMS allows the user to specify periodic boundary conditions using the PERI ODI C
option to the CREATE_DECOMP directive as shown in Example 9-1. This option
causes exchanges to fill in the halo regions on the outer model boundaries as shown in
Figure 9-1.

program | apl ace_periodi c
inmplicit none

i nteger im
par anet er (i m=100)
integer jm
par amet er (j m=99)

CSMS$DECLARE_DECOMP(dh : <0, 0>)

real gl obal _error

real tolerance

parameter (tol erance = 0.002)
i nteger iter

NRRRPRRRRERRR R
COONOUIRWNROOWONOUAWNER

i nteger i
i nteger j

CSMS$DI STRI BUTE(dh, 1, 2) BEG N
real, allocatable :: f(:,:)
real, allocatable :: df(:,:)

21 CSMs$DI STRI BUTE END

22

23

24 CSMS$CREATE_DECOWP(dh, <im+2, jm2> <2,2> : <PERH CDIC, PERI ODI C)
25

26 al l ocate(f (0:iml, 0:jm+l))

27 al l ocate(df (0:iml, 0:jmtl))

28

29 CSMS$PARALLEL(dh, <i>, <j>) BEGA N

30

31 CSMS$SERI AL BEG N

32 doj =0, jmil

33 doi =0, im+ 1

34 f(i,j) = sqgrt(real (i+j)) - sqgrt(real(i)) - sqgrt(real(j))
35 end do

36 end do

37 CSMS$SERI AL END

38

39 iter =0

40 gl obal _error = 1.0

41

42 do while ((global _error .gt. tolerance) .and. (iter .lt. 1000))
43 iter =iter + 1

44

45 gl obal _error = 0.0

46

47 CSMVB$EXCHANGE( f)
48 CSMS$GLOBAL_| NDEX(1) BEG N

49 doj =1, jm
50 f(o ,j) =f(im J)
51 f(iml,j) =f(1, j)
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

end do

CSMS$GLOBAL_| NDEX END

CSMS$GLOBAL _I| NDEX(2) BEG N

doi =

end do

end d

0]

11

I'm

?f(f§i-1,j) +f(i+1,)) + f(i,j-1) + f(i,j+1))
i ]

N

Im

(glbbal_error dt. abs(df(i,j))) then
gl obal _error = abs(df(i,j))

end if

e
3

m
FCg) +dfi(iLg)

CSMS$REDUCE( gl obal _error, MAX)

end do

print
print *

"Ended with iter : ', iter
"dobal _error: ', global _error

CSMS$PARALLEL END

end

Example 9-1: Version of the Laplace program with periodic boundary conditions.

82



PROCESS: P1

/@—§

rr\
e

Local Indices -1 0 1 2 3 3 4 6 7 8 7 8 9 10 11
Global Indices 10 0 1 2 3 3 456 7 8 7 8 910 0

Figure 9-1: Exchangesin a periodic model.

With the model boundary halo regions properly updated, the periodic boundary
conditions shown in lines 48-60 will produce the correct answer. Notice that even in the
dynamic memory case, the local and global indices are not identical as shown in Figure
9-1. Withi m setto 9, local index —1 on process P1 corresponds to global index i m+1
(20). Loca index 11 on process P3 corresponds to global index 0. However, explicit
index tranglation using TO_LOCAL and TO_GLOBAL is still not needed in a periodic
code that uses dynamic memory because index differences only occur at the periodic
boundaries where GLOBAL_INDEX will automatically handle any needed translations.
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10 Nesting and Coupling: Transfer-Interpolation

In some programs it is necessary to interpolate data from one grid onto another grid. This
kind of “inter-grid interpolation” occurs, for example, in nested atmospheric codes that
use mesh refinement techniques to improve resolution in critical areas. Data from a
coarse “parent” grid may be used to compute boundaries of afine “child” grid (see Figure
10-1). Conversely, data from a fine “child” grid may be used to compute overlapping
values in its coarse “parent” (see Figure 10-2). Also, it may be necessary to reconcile
overlapping portions of two “sibling” grids (see Figure 10-3). In addition, inter-grid
interpolation is used to couple models that are based on different grids (see Figure 10-4).
A common exampleis coupling of atmospheric and oceanic models.

P

\

e
P
=

P
T

A

Figure 10-1: Computing boundary pointsin a high-resolution “ child” grid from pointsin a low-
resolution “parent” grid.

In a paralel program, inter-grid interpolations often require inter-process communication
that can be quite complex. SMS encapsulates this complexity by combining both
interpolation and communication into a single “transfer-interpolation” operation. SMS
transfer-interpolation can be used to paraleize any inter-grid interpolation that uses
weighted sums of valuesin a source grid to compute values in a destination grid.



Figure 10-2: Computing overlapping pointsin a low-resolution “parent” grid from pointsin a high-

resolution “child” grid.
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Figure 10-3: Reconciling overlapping pointsin “sibling” grids.
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Figure 10-4: Coupling different grids.
10.1 Using SET_TRANSFER_INTERPOLATE to Define Interpolations

The SET_TRANSFER_INTERPOLATE directive is used to specify any inter-grid
interpolation scheme that can be expressed as weighted sums. Before
SET_TRANSFER_INTERPOLATE can be used, the serial code must be transformed so
that source grid coordinates, destination grid coordinates, and weights are each stored in
arrays. Code in thisform will be referred to as “ stencil-oriented”.

10.1.1 Transforming Serial Codeto “ Stencil-Oriented” Form

Example 10-1 shows a simple stencil-oriented serial code fragment that is used to
compute elements of fine-grid array X_FI NE from weighted sums of elements of coarse-
grid array X_COARSE. In this code, NUM_FI NE_PO NTS is the number of elements to
be computed in array X _FI NE. MAX_STENCI L_PQO NTS is the maximum number of
elements from X_COARSE that will be used to compute any element in X_FI NE by
weighted sum. The coordinates of each element of X _FI NE to be computed are stored in
array fi ne_i ndi ces. The coordinates of each element of X COARSE that are used to

compute each element of X FI NE are stored in array stencil _i ndices. The
corresponding weights are stored in array stencil _wei ghts. (Initidizations of
fine_indices ,stencil _indices, andstencil _wei ghts are not shown).

The actual weighted-sum computations are performed in the loop beginning at line 13.
Figure 10-5 illustrates details of the weighted sum used to compute one of the elements
of X_FI NE.

real X COARSE(i nt, | nt)
real X FINE(inf,jnf)

i nt eger fine_indices(2, NUM FI NE_PO NTS)
i nteger stencil _indices(2, MAX_STENCI L_PQO NTS,

& NUM_FI NE_PQ NTS)
real stenci | _wei ght s(MAX_STENCI L_PQO NTS,
& NUM_FI NE_PQO NTS)

O©ooO~NOUITRhWNE
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10 ...Initialize fine_indices, stencil _indices, and stencil_weights...
11

12 C NOTE “stencil-oriented” form of serial interpolation code
13 do ifp = 1, NUM_FI NE_PO NTS

14 i = fine_indices(1,ifp)

15 j = fine |nd|ces(2 i fp)

16 X_FI NE(I j) = 0.0

17 do icp = 1 MAX_STENCI L_PO NTS

18 X FINE(i,j) = X FINE(i,j) +

19 & (stenC|I_meights(icp,ifp) *
20 & X _COARSE(stencil _indices(l,icp,ifp),
21 & stencil _indices(2,icp,ifp)))
22 enddo

23 enddo

Example 10-1: Serial inter-grid interpolation codein “ stencil-oriented” form.

X_FI NE( 2, 4) =\WL* X_COARSE( 3, 4) + WW*X_COARSE(4, 4) +
WB* X_COARSE( 3, 5) + \W*X_COARSE( 4, 5)

NUM_FI NE_PO NTS=48

MAX_STENCI L_PO NTS=4

stencil _indices(:,1,ifp)=(/3,
stencil _indices(:,2,ifp)=(/4,

)
)
stencil _indices(:,3,ifp)=(/3, %)
stencil __indices(:,4,ifp)=(/4,%)

stencil _weights(:, ifp)=(/W, W, W, W/

\

AN

== X_FI NE

fine_indices(:,ifp)=(/2,4/)

Figure 10-5: Detail of coar se-to-fine inter polation computations. Integer i f p istheloop index used
on line 13 of Example 10-1.

10.1.2 Defining an I nter polation

Once the seria code is in “stencil-oriented” form, the
SET_TRANSFER _INTERPOLATION directive can be used to define inter-grid
interpolations. Example 10-2 shows how this is done for the inter-grid interpolation
introduced in Example 10-1. Arrays X _COARSE and X _FI NE are distributed using
decompositions dhCoar se and dhFi ne, respectively. The
SET_TRANSFER _INTERPOLATION directive beginson line 17.
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CSMS$DI STRI BUTE( dhCoar se, <int>, <jnt>) BEG N
real X COARSE(i nt, | nt)

CSMB$DI STRI BUTE END

CSMS$DI STRI BUTE( dhFi ne, <inf>, <jnf>) BEA N
real X FINE(inf,jnf)

CSMB$DI STRI BUTE END

i nt eger fine_indi ces(2, NUM FI NE_PO NTS)
i nteger stencil _indices(2, MAX_ STENCI L_PQ NTS,

& NUM_FI NE_PQO NTS)
r eal stenci | _wei ght s(MAX_STENCI L_PQO NTS,
& NUM_FI NE_PO NTS)

CSMS$PARALLEL( dhFi ne, <i>, <j>) BEA N
...Initialize fine_indices, stencil _indices, and stencil_weights...

CSMBS$SET_TRANSFER_| NTERPOLATI ON( dhCoar se, dhFine, 2,
CSMB$> NUM_FI NE_PO NTS, fine_indices, MAX_STENCI L_PO NTS,
CSMB$> stencil _indices, stencil_weights, INTERP_C F)

NRPRRRRPRRRERREPE
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CSMB$TRANSFER( <X_COARSE, X _FINE : |NTERP_C F> ) BEG N

22 C NOTE “stencil-oriented” formof serial interpolation code

23 do ifp = 1, NUM_FI NE_PQO NTS

24 i = fine_indices(1,ifp)

25 j = fine_indices(2,ifp)

26 X FINE(i,j) = 0.0

27 do icp = 1, MAX_STENCI L_PO NTS

28 X FINE(i,j) = X FINE(i,j) +

29 (stencil _weights(icp,ifp) *
30 & X COARSE(stencil _indices(1,icp,ifp),
31 stencil _indices(2,icp,ifp)))
32 enddo

33 enddo

34 CSMS$TRANSFER END

Example 10-2: The SET_TRANSFER_INTERPOLATION directiveisused to definetheinter-grid
interpolation introduced in Example 10-1. The TRANSFER directive performsthe computations
and inter-process communicationsrequired to inter polate between grids.

The first two arguments in the SET_TRANSFER_INTERPOLATION directive are the
names of the decompositions used by the source and destination arrays. The third
argument is the rank of the interpolation, which cannot be larger than the rank of the
source or destination arrays. The fourth argument is the number of elements in the
destination array that will be computed during interpolation and the fifth argument is a
list of coordinates for each element. The maximum number of elements from the source
array that will be used to compute any element of the destination array is indicated by the
sixth argument. The seventh argument is an array of lists of coordinates of elements from
the source array that will be used to compute each element of the destination array. The
weights used to interpolate each element of the destination array are indicated by the
eighth argument. Finally, the last argument is a user-defined name for the interpolation.
This name is used again in the TRANSFER directive to select the interpolation scheme.
Finally, the code that initidizes fine_i ndices, stencil _indices, and
stencil _weights must appear inside a PARALLEL directive (see lineld of
Example 10-2).

Note that any array dimension may be interpolated whether or not it is decomposed. The
independence of interpolated dimensions and decomposed dimensions allows full
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flexibility to support any weighted-sum interpolation scheme with any decomposition.
However, to minimize inter-process communication, interpolation of non-decomposed
dimensions should be decoupled and handled separately whenever possible (see Example
10-4).

10.2 Using TRANSFER to I nterpolate Between Grids

The TRANSFER directive has special syntax for inter-grid interpolations as shown on
line 21 of Example 10-2. The source and destination arrays (X_COARSE and X_FI NE)
are enclosed in angle brackets (see Section 6). In addition, a third argument
(INTERP_C_F) references the name of the interpolation, defined by the
SET_TRANSFER_INTERPOLATION directive (line 19 of Example 10-2). Note that
the serial code enclosed between the TRANSFER “BEGIN” and “END” must include all
interpolation computations to ensure that the serial code works correctly. During source
code tranglation, code between the “BEGIN” and “END” is replaced with its parallel
equivalent.

Transfer-interpolation operations are aggregated to reduce latency in the same way
aggregation is done for standard transfers. Note that aggregation of multiple
interpolations is done even if the source or destination arrays are not decomposed in the
same way or if different interpolations are used. Aggregation of transfer-interpolation
operations is illustrated in Example 10-3 for a simple case where arrays Y_COARSE and
Y_FI NE are decomposed like X COARSE and X _FI NE. Aggregation is achieved by
combining the transfer-interpolations into asingle TRANSFER directive (lines 1 and 2).

1 CSMB$TRANSFER( <X _COARSE, X _FINE : | NTERP_C F>,
2 CSMs$> <Y_COARSE, Y_FINE : |NTERP_C F>) BEG N

do ifp = 1, NUMFI NE_PC] NTS
i:finelndlces(l f p)
j = fine_indices(2,ifp)
X FINE(i,j) = 0.0
Y_FINE(i,]) =0.0
d0|cp—1MAXSTENCIL PO NTS
X FINE(i,j) = X FINE(i,j) +

& (stenciI_meights(icp,ifp) *
& X _COARSE(stencil _indices(l,icp,ifp),
& stencil __indices(2,icp,ifp)))
Y_FINE(i,j) = Y_FINE(i,j) +
& (stencil _weights(icp,ifp) *
& Y_COARSE(stencil _indices(1l,icp,ifp),
& stencil _indices(2,icp,ifp)))
enddo
18 enddo

19 CSMS$TRANSFER END

Example 10-3: Thisform of the TRANSFER performsinter-grid interpolationsto compute elements
of both X_FI NEand Y_FI NE. When a single TRANSFER directiveisused for multiple

inter polations, messages ar e aggregated. Thiswill improve performance on some machines by
reducing message latency. Notethat the serial code enclosed by the TRANSFER directive must
perform interpolation computationsfor all destination arrays.

In some circumstances, it is convenient to use an interpolation for computations on arrays
with higher rank. For example, suppose that arrays X COARSE and X_FI NE from
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Example 10-2 each had a third, non-decomposed dimension with size km Furthermore,
suppose that interpolation between X COARSE and X _FI NE was independent of the new
third dimension. The same interpolation, | NTERP_C_F could still be used as shown in
Example 10-4. The syntax | NTERP_C F( 1, 2) inthe TRANSFER directive on line 1
indicates that the first two dimensions of the arrays correspond to the first two
dimensions of the interpolation. SMS will automatically replicate interpolation
computationsin the third array dimension.

1 CSMS$TRANSFER( <X COARSE, X FINE : INTERP_C F(1,2)> ) BEG N

2 do k = 1, km

3 do ifp = 1, NUM FI NE_PO NTS

4 i = fine_indices(1,ifp)

5 j = fine |nd|ces(2 i fp)

6 X_FINE(i,j,k) = 0.0

7 do icp = 1, MAX STENCIL PO NTS

8 X_FINE(i,j,k) = X FINE(i,j,k) +

9 & (stencil MEIghtS(iCp,ifp) *
10 & X COARSE(stencil _indices(1,icp,ifp),
11 & stencil _indices(2,icp,ifp),k))
12 enddo

13 enddo

14 enddo

15 CSMS$TRANSFER END

Example 10-4: Interpolations may be used for arrayswith higher rank. Here, interpolation of 3D
array X_FI NE from 3D array X_CQOARSE isdone using 2D decomposition | NTERP_C F (defined on
lines 14-16 of Example 10-2).

10.3 Using SET_NEST _LEVEL to Switch Between Grids

In the examples shown so far, the source and destination decompositions have had
different names (dhCoar se and dhFi ne in Example 10-2). However, it is often
desirable to define a single decomposition name and use it to describe both the source
and destination decompositions. In Example 10-5, subroutine SOLVE is called twice,
once with X_COARSE (line 29) and once with X_FI NE (line 36). However, X _COARSE
and X_FI NE are decomposed differently. To avoid passing SM S-specific decomposition
information through the interface of subroutine SOLVE (which would unnecessarily
complicate the serial code), SMS alows a single decomposition name to refer to more
than one decomposition. Individually, these component decompositions are called
“nests’.

In Example 10-5, decomposition dh is declared to have two nests by using the syntax
“dh(2)” in the DECLARE_DECOMP directive (line 4). The nests are then referred to
individually using “dh( 1) ” (coarse nest) and “dh(2) " (fine nest) on lines 10, 11, 21,
and 24. SMS directives inside subroutine SOLVE do not explicitly reference a specific
nest (dh(1) ordh(2)). Instead, the nest level is selected before each call to SOLVE by
SET_NEST_LEVEL directives on lines 28 and 35. Unlike most other SMS directives,
the effects of the SET_NEST_LEVEL directive carry over into called subroutines. The
selected nest will remain selected until another SET_NEST_LEVEL directive is
encountered.

1 [include file parans.inc]
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integer inc,jnc,inf,jnf
common /sizes_com int,jnc,inf,jnf
CSMS$DECLARE_DECOVP( dh(2), 2)

[mai n program source file]
c...

2
3
4
5
6
7
8
9 i ncl ude ' parans.inc'

10 CSVMS$CREATE DECOWP(dh(1), <int, jnt>, <3, 3>)

11 CSMS$CREATE_DECOWP(dh(2), <inf, jnf>, <3, 3>)

12 C ...

13 CSMS$SET_TRANSFER | NTERPOLATI ON( dh(1), dh(2), 2,

14 CSMS$> NUM FINE_PO NTS, fine_indices, MAX_STENCI L_PQO NTS,
15 CSMS$> stencil _indices, stencil_weights, |INTERP_C F)

16
17
18
19
20

[ subroutine source file]
C...
i ncl ude ' parans.inc'
21 CSMs$DI STRI BUTE(dh(1), <inc>, <jnc>) BEG N
22 real X COARSE(i nt, j nt)
23 CSMs$DI STRI BUTE END
24 CSMS$DI STRIBUTE(dh(2), <inf> <jnf>) BEG N

25 real X FINE(inf,jnf)

26 CSMS$DI STRI BUTE END

27

28 CSMS$SET_NEST _LEVEL( dh, 1)

29 CALL SOLVE(X_COARSE, i nt, j nT)
30

31 CSMB$TRANSFER( <X _COARSE, X _FINE : INTERP_C F> ) BEA N
32 C ...
33 CSMS$TRANSFER END

34

35 CSMS$SET_NEST_LEVEL( dh, 2 )

36 CALL SOLVE(X_FINE, i nf,jnf)
37

38

39 [anot her subroutine source file]
40 SUBROUTI NE SOLVE( X, i mjm
41 i ncl ude ' parans.inc'

42 CSMs$DI STRI BUTE(dh, <inp, <jnp) BEG N
43 real X(imjm

44 CSMs$DI STRI BUTE END

45 i nteger i,j

46 CSMS$PARALLEL(dh, <i>, <j>) BEGAN
47 C ...

48 CSMS$PARALLEL END

49 END

Example 10-5: Subroutine SOLVE must be called with either X COARSE or X_FI NE asthefirst
argument. Sincethesetwo arrays are decomposed differently, the best way to do thisisto createa
single decomposition with two “nests’, dh(2). The SET_NEST_LEVEL directive selectswhich nest is
used.
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11 1/0

One of the most powerful features of SMS is its ability to support most types of I/O
without directives. The fact that communication patterns for 1/0 of decomposed and non-
decomposed arrays differ is hidden from the programmer. SMS automatically generates
the communication needed to read or write data to or from disk in the same sequence as
the serial code would have done it regardless of the number processes used. Unformatted
I/0 is discussed in Section 11.1 while formatted 1/O is covered in Section 11.2. Printing
in a paralel program often requires additional decisions from the programmer. SMS
allows the programmer to make these decisions by providing several print modes that are
introduced in Section 11.2.2. Finally, Section 11.3 discusses methods for improving 1/O
performance.

11.1 Unformatted I/O

Figure 11-1 illustrates dependencies for read and write of a simple one-dimensional
decomposed array. During a read, data from a single file must be parceled out to each
process. This type of communication pattern is called "scatter". During a write, data
from each process must be combined in the “proper order” and written to disk. Thistype
of communication pattern is a different form of "gather" than the form used for
TRANSFER and bit-wise exact REDUCE. Instead of gathering data into a globa
variable that is replicated in memory on all processes, data is gathered into a single file
on disk. "Proper order" means the data must be read from or written to disk in the same
sequence that the serial code uses. Though it appears quite simple in Figure 11-1, the
data reorganization required to match serial ordering in files can be quite complex,
especially for two-dimensional decompositions or when the decomposed arrays have halo
regions (Figure 11-2). Additionally, when variables being input have halo regions
associated with them, these regions are automatically updated by SMS.
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real x(15)
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P2
Figure 11-1: Conceptual schematic of the input and output of a decomposed array. On input, one
process reads the global data from disk. The appropriate sections of the global array are then

“scattered” to each process. On output, the decomposed data are gathered into a global array and
then written to disk. The underlying implementation may use a more efficient scheme on some

machines.
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Parallel Memory Layout
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Halo Region

1,
i
Serial File Data Layout
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Figure 11-2: Conceptual schematic of the re-ordering required to write and read two-dimensionally
decomposed data to disk in the same order asthe serial code would write it. Special care hasto be
taken to write the only the interior of each process-local domain and not the halo data. The halo
regionsarefilled during the read operations.

Figure 11-3 illustrates dependencies for read and write of a non-decomposed variable.
During aread, a copy of datafrom a single file must be sent to each process. This type of
communication pattern is called "broadcast”. During write, it is only necessary to write
data from a single process because each process should have an identical copy of the
variable.
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Figure 11-3: Schematic of the input and output of a non-decomposed array. On input, one process
reads the data from disk. The data are then replicated on all other processes. On output, a single
processwritesthe data to disk.

Example 11-1 demonstrates unformatted 1/O of both decomposed and non-decomposed
variables. SMS automatically trandates the read (line 32) and write (line 28) statements
for both decomposed arrays x and y and non-decomposed scalar scal e to the
appropriate paralel 1/0 operations. When automatically generating parallel 1/O
operations, SMS uses information in the DISTRIBUTE directives to determine how to
scatter, gather, or broadcast data. Notice that any types of decomposed or non-
decomposed variables can be mixed in a single write or read statement. It is not
necessary to reorganize existing serial read or write statements to take advantage of
automatic parallelization by SMS.

[Include file: io0.inc]
1 integer im jm
2 conmon /sizes_com im jm

3 CSMS$DECLARE DECOVP( DECOMP_I J, 2)

[ Source file: binary.f]

1 program binary_io
2 include "io.inc'
3 im= 10

4 jm=5
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5 CSMS$CREATE_DECOVP(DECOWVP_|J, <imjnp, <1, 0>)
6 call wite data

7 end

8

9 subroutine wite_ data

10 i nclude '"io.inc

11 i nteger i, j

12 real scale

13 CSMS$DI STRI BUTE( DECOVP_I J, <inmp, <jnmp) BEG N
14 integer x(imjm, y(imjm

15 CSMB$DI STRI BUTE END
16 CSMB$PARALLEL( DECOMP_I J, <i >, <j >) BEG N

17 do j=1,jm

18 do i=1,im

19 CSMB$TO GLOBAL(<1,i>, <2,j>) BEGAN

20 x(i,j) = (100 * i) + ]

21 y(i,]) = nmod(i, 2)

22 CSMs$TO GLOBAL END

23 end do

24 end do

25 CSMS$PARALLEL END

26 scale = -1.0

27 open (17,file="iol out.dat',form unfornmatted')
28 wite (17) x, y, scale

29 close (17)

30

31 open (18,file="iol out.dat',form unformatted')
32 read (18) x, y, scale

33 cl ose (18)

34 return

35 end

Example 11-1: This program does output and input of both decomposed and non-decomposed data.
No additional directivesarerequired for the correct I/O to be performed, regardless of the number
of processes.

By default, SMS assumes unformatted files are stored in native FORTRAN binary
format. The default behavior can be modified using the following environment variables:

SMB_READ_FORMAT
SVB_WRI TE_FORMAT

The currently available (case insensitive) formats are:

| BM
SUN

VPl _ EXTERNAL
EXTERNAL
SMS

In some cases, file formats with different names are actually the same format. For

example, SG@ and SUN are redly the same. Note that MPI, MPI _EXTERNAL,
EXTERNAL, and SMVS all refer to the portable MPI 1/O external format. The advantage to
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using this format is that any file written by an SMS program may be read by any other
SMS program on any other machine. This is true regardliess of the number of processes
used on either machine because SM S preserves serial data ordering. To convert datafiles
from one format to another, simply write a serial program that reads and writes the data,
compile and link with SM'S and then set the above environment variables appropriately.

11.2 Formatted I/O

SM S supports the formatted input and output of non-decomposed data without directives.
Also supported is unformatted 1/0O via namelist of both decomposed and non-decomposed
data. Formatted 1/0O of decomposed variables by means other than namelist is not
currently supported, so code segments that include this kind of I/0O must be enclosed by a
SERIAL directive (see Section 8). In a future release of SMS, this use of SERIAL will
become optional.

11.2.1 Formatted I nput

Formatted input including namelists is handled automatically by SMS. The user does not
need to add any directives. The only caveat is that input variables cannot be decomposed
arrays unless a namelist is used. In this case, a work-around is to enclose the formatted
read statements within a SERIAL directive. Since formatted reads typically occur
infrequently during the course of a model run, this approach usually does not incur a
significant performance penalty.

11.2.2 Formatted Output

The simple task of printing a message on the screen becomes complicated in a parallel
program. Consider the following simple print statement:

print *,'HELLO

There are no clear standard definitions of what will appear on the screen when a
"paralel" print statement is executed. Will each process print a separate message? Will
the separate messages appear on different lines on the screen? Will al processes be
forced to wait until the print is complete before useful work can continue? If the
statement were executed on three processes, we might see any of the following output:

HELLO
HELLO
HELLO
HELLO
HHHEEELLLLLLOOO
HELLHEHLEOLOLLO

During the brief history of parallel computing, each of these possibilities has been
implemented on at least one parallel machine.
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SMS simplifies this situation by providing three "print modes' that allow the user to
control the behavior of parallel print. The modes are default, ASYNC, and ORDERED.
These modes are selected using the PRINT_MODE directive. The PRINT_MODE
directive may only be used for formatted output to stdout. This may be accomplished
either by using PRI NT statements or WRI TE statements when the unit number is either 6
or *. (Notethat units 0, 5, and 6 should not be opened in an SM'S program because many
Fortran compilers behave strangely when these units are connected to named files)) The
print modes are illustrated in Example 11-2.

program print_nodes

inmplicit none

i nteger, paraneter :: im= 12
i nteger xmax, i

CSMB$DECLARE_DECOVP( dh, 1)

CSMB$DI STRI BUTE(dh, 1) BEG N
i nteger, allocatable :: x(:)
CSMs$DI STRI BUTE END

CSMS$CREATE_DECOWP( dh, <i mp, <0>)
al l ocate(x(in)

CSVS$SERI AL BEG N
doi =1, im
x(i) =i
end do
CSVS$SERI AL END

NRRRRPRRRRE R
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21 CSMS$PARALLEL(dh, <i >) BEG N

22 xmax = 0

23 doi =1,im

24 xmax = max(xmax, x(i))
25

26 if (x(i) .ge. 12) then
27 CSMS$PRI NT_MODE( ASYNC) BEG N
28 print *,"WARNING x .ge. 12 !!
29 CSMS$PRI NT_MODE END

30 endi f

31

32 end do

33 CSMS$PARALLEL END

wWww
ool h

CSMS$PRI NT_MODE( ORDERED) BEG N
CSMB$I NSERT print *,'DEBUG |ocal naxi num value ="', xmax

37 CSMS$PRI NT_MODE END

38

39 CSMS$REDUCE( xmax, MAX)

40

41 wite( *,900) 'maxi mum value = ', xmax
42 900 fornat(a, i4)

43 end

Example 11-2: Program that illustratesthe various print modes supported by SMS.

When the serial code versions pri nt _nodes is run, the following is printed on the
screen:

>> print_nodes
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WARNING x .ge. 12 !!
maxi mum val ue = 12

When the parallel codeisrun on 1 process, the following is printed on the screen:

>> spsRun —np 1 print_nodes_parall el
WARNING x .ge. 12 !!

DEBUG | ocal maxinum value = 12
maxi mum val ue = 12

For 4 processes.

>> spsRun —np 4 print_nodes_parall el
WARNING  x .ge. 12 !!

DEBUG | ocal maxi numvalue = 3

DEBUG | ocal maxi numvalue = 6

DEBUG | ocal maxi numvalue = 9

DEBUG | ocal maxi num value = 12
maxi mum val ue = 12

The write statement on line 41 in Example 11-2, is printed using the default print mode.
The default print mode is used for any print statement that is not enclosed by a
PRINT_MODE directive. It will cause the paralel code to print the same messages as
the serial code in most cases. Only one system-dependent designated process (the “root”
process) will execute the print statement; the others will skip it and can immediately
continue with useful computations.

The print statement on line 36 is executed using the ORDERED print mode. The
ORDERED print mode may only be selected using the PRINT_MODE directive. This
mode causes one message to be printed on the screen for each process and guarantees that
the messages always appear in the same order. It is most useful for debugging purposes.
However, in order to guarantee message ordering, no process can continue until all
processes have executed the print statement. This means care must be taken that all
processes will ALWAYS execute an ordered print or the program will hang. For
example, suppose we use the ORDERED print mode at line 27:

if (x(i) .ge. 12) then
CSMS$PRI NT_MODE( ORDERED) BEG N
print *,"WARNING x .ge. 12 !!
CSMS$PRI NT_MODE END
endi f

In this case, we see the same results for the one-process run. However, the four-process
run produces the following results:

>> snsRun —np 4 print_nodes_parall el

DEBUG | ocal maxi numvalue = 3
DEBUG | ocal maxi numvalue = 6
DEBUG | ocal maxi numvalue = 9

WARNING:  x .ge. 12 !!

In this case, the program hangs (deadlocks) before the final message can be printed
because the warning print statement is now an ordered-mode print that has been executed
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by only one process. The program will wait forever for the other processes to enter this
print statement. The default print mode is aso inappropriate here because the warning
message would not be printed if point 12 were not on the root process. Deadlock would
not occur, but the warning message would not be printed.

The ASYNC (asynchronous) mode is the proper mode to use in cases like the printed
warning statement on line 28 because there is no guarantee that all processes will execute
the print statement. In this mode, one message will appear on the screen for each process
that executes the print statement. Like the default mode, there is no process
synchronization during asynchronous prints. As a result, ordering of print statements
may vary from one run to the next when ASYNC mode is used. Like the ORDERED
mode, the ASYNC print mode may only be selected using the PRINT_MODE directive.
For example, suppose we use the ASYNC mode for line 35 instead of ORDERED.

CSMB$PRI NT_MODE( ASYNC) BEG N
CSMVB$I NSERT print *,'DEBUG | ocal naxi num value ="', xmax
CSMS$PRI NT_MODE END

Running with four processes two times might produce the following results:

>> smsRun —np 4 print_nodes paral | el

DEBUG | ocal mexi mumvalue = 3

DEBUG | ocal maxi numvalue = 6

DEBUG | ocal maxi numvalue = 9

WARNING: x .ge. 12 !!

DEBUG | ocal maxi num value = 12
maxi num val ue = 12

>> smsRun —-np 4 print_nodes paral | el
DEBUG | ocal nmaximumvalue = 6
DEBUG | ocal maxi mum val ue 3
WARNING: x .ge. 12 !l

DEBUG | ocal maxi numvalue = 9
DEBUG | ocal maxi num value = 12
maxi mum val ue = 12

Note that the ASYNC-mode prints can appear in any order and can even appear out-of-
order with other non-ASYNC-mode prints. This can be confusing in some cases. Also,
the ASYNC mode does not work properly when the SMS program is being run in
“serverless’ mode (see Section 11.3.3).

11.3 1/O Performance Tuning

This section discusses ways the user of SMS can optimize the 1/0 performance of their
codes. These optimizations require a good understanding of how input and output
operations are handled in SMS. Severa environment variables that can be used to tune
SMS I/O at run time are described below. The following table offers suggested values
for these environment variables when an SMS program is run with an 1/O server (see
Section 11.3.2). When a server is not used (see Section 11.3.3), default values are
recommended.)
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CASE |: Input files will fit in server nenory

Server w thout Cachers Server with Cachers

SM5_RBS Si ze of largest input Si ze of |argest input
file in bytes divided file in bytes divided
by (SM5_RBC-1) by (SM5_RBC-1)

SM5_RBC Default (16) Default (16)

SM5_WBS Si ze of |argest Def aul t
output file in bytes

SM5_CLOSE_MODE Requi re-fl ush Requi re-fl ush

SM5 | OC_SI ZE N A Si ze of |argest output

file in bytes divided

by the number of cache

processes and

multiplied by 2
SMS_RAN_RSTYLE File File

CASE Il: Input files will NOT fit in server menory
(only affects input)

Server w thout Cachers Server with Cachers

SM5_RBS Si ze of largest input Si ze of largest input
variable in bytes variable in bytes
di vided by (SM5_RBC-1) divided by (SM5_RBC-1)
SM5_RBC Default (16) Default (16)
SM5_RAN _RSTYLE One- var One-var

Figure 11-4: Suggested valuesfor SM S environment variablesthat affect I/O performance.
“Cachers’ refersto SM Swrite-cache processes (see Section 11.3.5).

11.3.1 General Guidelines

Two general guidelines should always be considered to improve both serial and parallel
I/0 performance. First, the user should do as little I/O as possible. Since I/O operations
do not scale well, their effect on parallel performance will increase as the number of
processes increase. What is an insignificant amount of run-time for 2 processes may be
quite significant for 200 processes.

One optimization that can be very useful is to optionally turn off all print statements.
Many serial codes already allow users to turn off some or even all print statements by
setting a flag at run-time. This may speed up the serial code in some cases. The
optimization is very useful in a parallel code where, on some machines, disabling prints
can result in significant performance improvements. The following code fragment
illustrates this common optimization:

if (print_enabled) then
print *, 'whatever...'
endi f

In this case, “print_enabled” could be input through a namelist at the beginning of
program execution.
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A second general guideline to improve I/O performance is to combine 1/O operations
whenever possible. For example,

read(10) u
read(10) v

could be combined into a single read statement:
read(10) u,v

This will maximize the size of data blocks read from or written to disk and minimize I/O
latency. Both unformatted and formatted statements should be considered for these
optimizations.

11.3.2 The SM S Server Process

By default, SMS designates an additional process, called the server process, to manage
the other processes and to handle all formatted and unformatted I/O operations. This
allows computations to be done concurrent with 1/0O operations and can improve the
overal performance of SMS program execution. Figure 11-5 illustrates a program run
using four compute processes and a SM S server process.

SMS Program Execution with a Server Process

[

Figure 11-5:; Inthisexample, four processes arerequested to run the program. By default, an
additional process, called the server process, will be used by SMSfor process management and 1/0
operations.
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11.3.3 Serverless1/O

For small numbers of processors (less than 8), it may be beneficial to combine the server
process functions with one of the computational processes. This type of operation is
called serverless I/O and isillustrated in Figure 11-6.

If serverless 1/0 is used, the I/O functions that would normally be run on a separate
process will be combined with one of the compute processes. Serverless SMS can be
requested through an environment variable given by the command:

>> setenv SMS_SERVER MODE serverl ess

On most machines, where there is a one-to-one correspondence between processes and
processors, serverless I/O will improve performance by making one more processor
available to do computations. However, when large numbers of processors are available,
program execution will usually be faster when a server process is used.

Serverless SM S Program Execution

PROCESS:

KEY:

- Useful Computations
I:I SMISI/O Operations

[ ] 'deTime

Figure 11-6: Anillustration of four SM S processes used to run a program without a server process.
In this example, process P1 must handle both program computationsand SM S server functions that
include I/O operations. While these operations occur, the other processeswill beidle.

11.3.4 The FLUSH_OUTPUT Directive

During write operations, the I/O server process buffers the data to be output in memory,
re-orders the decomposed data into seria order, and then writes it out in large blocks to
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disk. By default, any write to disk will be delayed until the buffer is full or the file is
closed. When this happens, buffers are "flushed" and their contents written to disk in
large blocks. While buffers are being flushed, any processes requesting 1/0 services will
have to wait until the flush operation is complete.

The environment variable SMS CLOSE MODE can be set to “require-flush” for
improved user control of when SMS output buffers are flushed. Then, performance
improvement can be gained by controlling when these buffers are flushed using the
FLUSH_OUTPUT directive.  This directive instructs the SMS 1/0 server process to
flush the buffers immediately. If FLUSH_OUTPUT is placed so no other 1/0 requests
are made during the flush operation, then no process will have to wait for the flush. If
any 1/0 request is encountered, it must wait until the flush operation is complete thus
minimizing the effectiveness of FLUSH_OUTPUT.

The following code fragment shows how this directive can be used:

open (17,file="main_fields.dat',form="unformatted')
wite (17) u,v,wp,t
close (17)

¢ useful computations ...

open (17,file="noisture.dat',form" unformatted')

wite (17) gs,qi,qr, g, qw
close (17)
CSMS$FLUSH _QUTPUT

¢ nore useful conputation ..
Example 11-3: Proper placement of a FLUSH_OUTPUT directive.

In this example, two files are written. Aslong as no other I/0O (unformatted, formatted, or
print) operations occur while the flush instruction is being processed, useful computations
will proceed at full speed while data is simultaneously re-ordered and written to disk.
This ability to overlap 1/0 with useful computation is key to achieving scalable I/0O
performance on many machines. However, any I/O statement that occurs soon after the
flush operation will be sufficient to make the directive ineffective. For example, when a
print statement appears just after the FLUSH_OUTPUT, it will force one of the processes
to wait until the flush operation completes. Most likely, al other processes will
eventually end up waiting for this process and useful computation will quickly cometo a
halt until the flush compl etes:

open (17,file="diagnostics.dat',form="unformatted')
wite (17) x1,x2
close (17)
CSMS$FLUSH _QUTPUT
print *,'bad idea to print sonmething here...'
nore useful conputation

Example 11-4: Improper placement of a FLUSH_OUTPUT directive.

11.3.5 Improving Output Performance
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To further increase the performance of output operations, two options are available.
First, SMS allows the user to designate at run-time any number of processes to serve as
write-cache processes. For example, Figure 11-7 illustrates a program that is run using
twelve computational processes, two write-cache processes, and a server process.

Computational
Processes

- O . S . . . . [mmmmmmm— - =

SMS WBS

P]_ | I32 | I:’3

Pl [ Ps Pe

Disk

Pz Ps Py

.....................

P10 P11 P12

. I S I S S S B S . .
_— s e . . . . . e . e .

Figure11-7: Anillustration of SM S output when write-cache processes and a server process are
used. SM S output operations pass data from the computational domain to the write-cache processes
(if specified). Dataisre-ordered on the write-cache processes befor e being passed through the server
processto disk. Theamount of memory allocated to the write-cache processes and the server process
can be controlled using SMS 10C_SIZE and SMS WBS respectively.

The function of write-cache processes is to temporarily store data being output so it can
be reordered and written to disk. The computational processes can write their data to
multiple write-cache processes at high speeds and although the write-cache processes will
proceed at relatively slow speeds, total execution time is not affected because disk writes
can be done at the same time as computations. Further, write-cache processes provide
more memory capacity to temporarily store the data before it is written to disk. The
number of write-cache processes can be requested at run-time using the - we option to the
snmsRun command. For example:

>> speRun —np nprocs execnane -wc <ncacher s>

executes a program where nprocs is the number of computational processes,
execnane isthe name of the executable, and ncacher s is the number of write-cache
processes to be used in the run. Refer to Section 12 more details about running an SMS
program.

For optimal performance, there should be enough write-cache processes to store all data
to be output at one time. By default, SMS allocates 8 Mbytes of memory for each write-

105



cache process. However, the environment variable SMS_10C_SIZE is provided to alow
the user to set the amount of memory (in bytes) they wish to allocate on each write-cache
process. The command:

>> setenv SMS_| OC _SI ZE 1000000

will allocate one million bytes of buffer space on each write-cache process. Since up to
50 percent of the buffer space can be lost to the overhead required to store the data
segments, a recommended size for this field is double the size of the expected output.
For example, assume we wish to output the following array:

real *4 bi g_array(100, 200, 300)

It will require 24 Mbytes of memory to output this array (4*100* 200*300). This figure
should be doubled to 48Mbytes to account for SMS overhead costs. If each write-cache
process had 10 Mbytes of memory available for SMS caching, we would need to allocate
five write-cache processes to output this array efficiently.

A second way to improve output performance is to change the size of the 1/0 buffer on
the server process. By default the size of this buffer is 256 Mbytes, however this value
can be changed through the SMS environment variable SMS WBS. If write-cache
processes are not used, then this variable should be set to the size of the largest output file
when possible, otherwise output performance could degrade.

11.3.6 Improving Input Performance

Only the server processis used to read formatted and unformatted input data; write-cache
processes are not used. |If data are decomposed, they are scattered to the other processes;
otherwise, they are broadcast to the other processes.

By default, three environment variables can be used to control SMS input performance:
SMS RBS, SMS RBC, and SMS RAN_RSTYLE. SMS _RBS determines the size of
each block that will be allocated to store input variables read from disk. SMS RBC
defines the number of blocks of size SMS _RBS that will be used for input. Finally,
SMS RAN_STYLE determines if files or individual variables will be input at one time.
Figure 11-8 illustrates how these variables are used for input operations.

If asingle file is input, the environment variable SMS_RBS should be set to the size of
that file and SMS_RBC should be set to one. If multiple files (e.g. initial conditions and
boundary conditions) are input with differing sizes, SMS RBS should be set to a
common factor of the size of each input file. For example suppose two files are required;
an initial conditions file of size 53 Mbytes and a boundary conditions of size 16 Mbytes.
An approximate common factor for these two files is 8 Mbytes (8*2=16, 8*6=54).
Therefore, good starting values would be: SMS _RBS=8Mbytes, SMS RBC=6.

Using these variables, the total size of each input file should be considered when
optimizing for performance. For example the execution of a program may be handled

106



with two files: input of initial conditions, followed by the input of boundary conditions.
There should be sufficient memory on a single process to store the entire contents of each
input file.

Server Process Computational

[ ] I [ ] I [ ] A

! i Domain
g SMS _RBC=3 I —r — —
SMS_RBS E
= i | .| Process1
Disk | i |

| : | Process 2
; g Process 3
§ i Process 4

Figure 11-8: All input will passfrom disk, through the server process, to individual processeswithin
the computational domain. Two SM S environment variables can be set to control the size of two
data structureswithin the server process. the number of input buffers (SMS_RBC) and the size of
each buffer (SMS_RBYS).

If not enough memory is available to store al input on a single process,
SMS RAN_RSTYLE should be set to “one-var”. This will force SMS to read each
variable into a buffer that resides on the server process, transfer that data to the server
process for distribution among the compute processes, and then read the next variable. In
this case, the quantity: SMS RBS* (SMS_RBC-1) should be set to the size of the largest
input variable.

The techniques described above are useful for reducing execution time when
performance analysis indicates that run-time is limited by 1/O time. Exact values of
environment variables and number of write-cache processes are best determined by
experimentation.
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12 Program Termination

Parallel programs using the SMS run-time system require special handling to ensure all
processes exit normaly. An SMS control process is often used to manage the child
processes that are spawned through the sms Run command to execute a program. Two
types of program termination are supported by SMS: anormal exit and an abort. When a
program exits normaly, the SMS control process will wait until every processes
computations, communications and 1/O are complete before exiting. A program abort
will not guarantee the completion of outstanding operations or an orderly termination of
processes.

12.1 Automatic Code Generation for Termination

By default, SMS automatically generates code to abort whenever a Fortran “stop”
statement is encountered. SMS aso generates a normal exit whenever a program “end’
statement is encountered. Consider the following program:

program nai n

do ii=0, num.iter
call tinme_steps(ii,status)
if (status .eq. ABORT) then
print *,’ Mdel Run failed at iteration: ‘,ii
stop
endi f
enddo

print *,’ Mdel Run Successfully Conpl eted
st op
end

Example 12-1: Automatic Code Generation by SM Swill causethis program to always abort.

Since the Fortran “stop” appears before the line before the end program statement, SMS
will generate code to abort the parallel run. During code trandation the following
warning message will appear when source contains a Fortran stop statement:

WARNI NG Program abort detected

Since the intent of the origina code in this case is to exit normally from the program, two
actions can be taken to ensure this happens in the SMS-generated source. Either the
second “stop” statement (above the “end”) should be removed, or the EXIT directive
should be used as illustrated in the next section.

12.2 EXIT Directive

EXIT is used to control the run-time behavior of an SMS program. This directive, when
inserted just before a “stop” statement, will instruct SMS to generate code to exit rather
than abort. The proper placement of this directive is illustrated in Example 12-2. In this
example, SMSwill generate an ABORT at line 7 and anormal exit at line 12.
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program nai n

do ii=0, num.iter
call tinme_steps(ii,status)
if (status .eq. ABORT) then
print *,' Mdel Run failed at iteration:

©oo~NOUTRhWNE

st op
endi f

enddo
10
11 print *,’ Mdel Run Successfully Conpl eted
12 CSMS$EXI T
13 st op
14 end

Example 12-2: Using CSMS$EXI T to override automatic translations
12.3 MESSAGE Directive

MESSAGE, is used to send a message to the user at run-time and optionally terminate
execution of the program when it is encountered. This directive is useful when the user
wishes to avoid unnecessary parallelization of code they believe is never executed. Three
run-time actions are available to the user of MESSAGE: ABORT, terminates execution
after writing the given message to stderr, WARN writes the given text to stderr, and
INFORM writes the text to stdout.

if (condition_ever_net) then
CSVB$MESSAGE( ABORT, ' COMPS: THI S CODE HAS NOT BEEN PARALLELI ZED BY SMS')
call conps(a, b, c, d, NX; NY)
endi f

Example 12-3: Using MESSAGE to output run-time messages.

In this example, the programmer believes the subroutine comps is never executed so
rather than parallelizing it, MESSAGE is used. Since ABORT is specified, SMS will
terminate the execution of this program after the message is output to stderr.
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13 Debugging

SMS provides two directives that aid the debugging process. COMPARE_VAR enables
the user to compare the values of variables between simultaneous runs of an SMS
program on different numbers of processes. This helps the user quickly pinpoint the
source of an error that causes solutions to diverge. Sometimes, errors are due to missing
or incorrectly placed exchanges. The CHECK_HALO directive helps identify these
cases by flagging halo regions that are not updated as expected.

13.1 Using COMPARE_VAR To Find Parallelization Errors

Example 13-1 shows an application of the COMPARE_VAR directive. In this code, a
one process run of the code yields:

Runni ng program check_var
oy (i)
9  34.00000
10  38. 00000
11 42. 00000
12 46. 00000

However, a 2 process run yields a different answer:

Runni ng program check_var
boy(i)
9  34.00000
10 17.00000
11 23.00000
12 46. 00000

program check_var
paranmeter (1M = 20)
CSMS$DECLARE_DECOWVP(dh, 1)
CSMs$DI STRI BUTE(dh, 1) BEG N
real, allocatable :: x(:)
real, allocatable :: y(:)
CSMB$DI STRI BUTE END

CSMS$CREATE_DECOVP( dh, <inp, <1>)

print *, 'Running program check_var'
al l ocate(x(in)

al l ocate(y(im)

x =0.0

RPRRRPRRR
GRWNROOONOUAWNR

16 CSMS$PARALLEL(dh, <i>) BEG N

17 doi =1, im

18 x(i) =i*2 - 1

19 end do

20

21 y = 0.0

22

23 doi =2, im1

24 y(i) = x(i-1) + x(i+1)
25 end do
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26

27

28 CSMS$SERI AL BEG N

29 print *, "i, y(i)'
30 doi =9, 12

31 print *, i, y(i)
32 end do

33 CSMS$SERI AL END

34

35 CSMS$PARALLEL END

36 end

Example 13-1: Application of the COMPARE_VAR directive.

To track down the problem, the user can insert a COMPARE_VAR directive at line 26 as
follows:

CSMB$COVPARE_VAR(y(2:im 1), 'after y assignnent')
Then the user can run the code as follows:

>> setenv SM5 SERVER MODE serverf ul
>> snsRun —-np 1 check var —np 2 check var -cv

This tells SMS to simultaneously launch a 1-process and 2-process run of the program
check_var and compare results (“-cv”). When the code generated by the
COMPARE_VAR directive is reached, each run gathers y into a global equivalent,
exchanges its values with the other run, and then compares them in the specified range
(2:im-1). (If no range is specified, all elements of y are compared.) If the variable is a
scalar or a non-decomposed array then it isimmediately compared; no gather operation is
required. In this example, since the variables differ, the program terminates with the
following error message:

NP=1: Runni ng program check_var
NP=2: Runni ng program check_var
COVWPARE_VAR failed :y after y assignnent
Vari abl e values for first, second run: 38. 00000 17. 00000
Incorrect at indices = 10

The difference occurs because an exchange is needed prior to the loop starting at line 23.
The character string, “after y assignment”, helps pinpoint the location of the difference.
The error message also identifies the name of the variable that is in error in case more
than one variable is specified in the directive. It also prints out the global array location
and variable values of the first point in the array that differs. Both runsimmediately exit
when an error is found. Notice that the print statement at line 11 appears twice. One
instance is labeled with “NP=1" to indicate it came from the one-process run; the other is
labeled with “NP=2" for the two-process run.

Severa additional points should be made about COMPARE_VAR. First, if the user runs
the program in the standard fashion:

smsRun —np 2 check_var
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then the result is the same as if the COMPARE_V AR directive had not been included in
the code at all. Second, when running with COMPARE_VAR enabled, any output to
filesisturned off to avoid generation of incorrect data that could occur when the two runs
simultaneously write to the same file. Third, SMS must be run with a server process for
the comparison to be made properly. Fourth, if the user wishes to use configuration files
while doing a comparison run, the SMS launch line looks as follows:

smsRun —cf configl check_var —cf config2 check _var -cv

Fifth, the user should avoid putting COMPARE_VAR directives inside a decomposed
loop. For example, consider the following code fragment:

CSMS$PARALLEL(dh, <i>) BEA N
doi =1, 2
X(i) = x(i) + y(i)
CSMS$COWPARE_VAR( x, “Conpare 1")
end do

Suppose simultaneous runs on 1 and two processes are compared. Each process in the 2
process run will call COMPARE_VAR once. However, the single process in the 1
process run will execute the COMPARE_VAR code twice. This will cause a hang or
possibly an error message if a subsequent COMPARE_VAR directive appears in the
code. Sixth, as a reminder, bitwise-exact reductions should be enabled when using
COMPARE_VAR. Otherwise, round-off differences in summations will cause
COMPARE_VAR to indicate the presence of a spurious error. Seventh, more than one
variable can be compared in one directive. For example:

CSMB$COVMPARE_VAR(X, y, “Conpare 2)

It is also possible to use COMPARE_VAR to verify that the paralel and serial code
solutions are identical. To do this, trandate and compile the code as before:

>> ppp prog.f
>> f90 prog_sns.f —o0 par_code

Next, trandate the code with the --CompareOnly option and compile:

>> ppp --ConpareOnly prog.f
>> f90 prog_sms.f —o0 serial _code

The —CompareOnly flag tells SMS to ignore all directives except for COMPARE_VAR.
/O statements are also left un-trandated. Finally, the two executables can be
simultaneously launched as follows:

>> spsRun —np 1 serial_code —np 2 par_code -cv

As before, when a difference is found, it will be flagged and the programs will terminate.
WARNING: thisuse of COMPARE_VAR may not work on all systems!
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13.2 Debugging Adjacent Dependencies: CHECK_HALO

The analysis of adjacent dependencies in a serial code and the process of accurately
placing EXCHANGE and HALO_COMP directives are highly prone to error. To help
the user track down such errors, the CHECK HALO directive and associated
SMS_CHECK_HALO environment variable can be used to check if all or part of a halo
variable is up-to-date. Suppose, in Example 5-4, the user forgot to include the
HALO_COMP directives on lines 43 and 48. When the program is run, it does not
produce the correct answer for ysum The user can observe that the loop on lines 52-54
requires one point of the lower and upper halo regions of b and ¢ be up-to-date. To
check this assumption, the following directive can be added at line 51.:

CSMB$CHECK HALQ(b<1, 1>, c¢<1,1>, 'LOOP 52')

If the SMS CHECK_HALO environment variable is set to "ON", the generated code
checks if the afore-mentioned halo points are up-to-date. In this case, since the hao
regions are not up-to-date, the SMS program will generate the following error message
and terminate:

LOOP 52 Hal o check failed for var : b

Suppose the HALO_COMP directives are included as shown on lines 43 and 48. This
time the check passes so no error messages are generated and the program continues.
Suppose the user includes the HALO_COMP directives on lines 43 and 48 and specifies
the CHECK_HALO directive asfollows:

CSMS$CHECK_HALQ(b, c, 'LOOP 52')

This form of the directive tells SMS to check the entire halo region. Since, for the lower
and upper halo regions, only one of the halo points are up-to-date, the program will
terminate with the same error message.

The directive can be added to the code on a permanent basis. When
SMS CHECK_HALO is“ON”, CHECK_HALO adds costly communication. However,
if the SMS CHECK_HALO environment variable is set to something other than "ON"
then the halo checks are skipped and the CHECK_HALO directives do not degrade
performance. If, after a code change, the program generates the wrong answer, the halo
checks can be turned back on to help isolate the problem.
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14 Building a Parallel Program
14.1 Overview

This section describes how to use the PPP to trandate Fortran code into SMS parallel
source code. Output files, named automatically by PPP, will be introduced in Section
14.2. Several command line options to PPP are described in Section 14.3. In Section
14.4, a simple makefile is described which can be used to build a serial or SMS parallel
code. In addition, various relevant compiler and linker options are discussed in this
section. Building incorrect parallel source using PPP can result in both syntactic and
semantic errors that must be corrected. Section 14.5 will discuss how to interpret these
PPP generated messages. Finally, Section 14.6 will describe possible compiler errors due
to namespace conflicts from PPP-generated source code.

14.2 PPP-Generated Output Files

Output files generated by PPP are named automatically. Include files will be named by
appending “.SMS’ to the origind file name (eg. parans.h becomes
par ans. h. SMS). All other source files will be named by appending “_sms” to the
body of the original filename (e.g. mai n. f becomesmai n_sns. f). Intermediate files
are also generated during the code trandlation process. These files, appended with the
suffix “.tmp”, remain after PPP trandation. When errors are detected in the code during
code parallelization, PPP messages will be generated that reference these intermediate
files (see Example 14-7). However, any corrections should still go into the original file
from which translated code was generated by PPP.

14.3 Building SM S Par allel Source Code

The transformation of Fortran code into parallel SMS code requires the use of PPP. PPP
trangations are based on both its analysis of the original code and the SM S directives that
were inserted into the code. This section describes how to use PPP to create parallel code
at the command line, defines what code generation options are available, and gives some
examples.

14.3.1 PPP Command Line Options

All PPP code tranglations are managed through a command line script caled ppp. A
single file can be processed at a time and no inter-procedural analysis is done. PPP is
invoked by: ppp [options] filename. Command line options currently
available are:

--checkfirst A useful optimzation to avoid PPP processing of
files that do not require translation. Thi s
option can be used to allow nore flexible use of
suffix rules (see Section 14.4). If no 1/0O
statements or directives are found, no PPP
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- -conment

--ConpareOnly
- - Ext endedSour ce
--Fcommon file
--Finclude file
--Fl ookup file
--Frodul e file
--Fvisible files

- - header

--help
--IncludePath path

--r8

--Ver bose | evel

14.3.2 Examples

processing is done and the followi ng nessage is

out put :
File has no directives - SKIPPI NG PPP PROCESSI NG
Leave replaced lines in the code as Fortran

commrents. This can be useful for debugging the
paral l el code. Note: the string used to coment
out the original code is "C PPP".

Only translate COWARE VAR directives. Not e
that 1/0 statenents will not be translated (see
Sectionl3.1).

Allow valid Fortran source to extend beyond 72
characters.

Name of an optional include file that is not
part of the original source code. Typically it
will contain data deconposition directives (see
Exanpl e 14-4).

Name of an included file to be parallelized that
is referenced in the source file being
transl ated by PPP (see Exanple 14-2).

Name of file containing mappi ng of nodul e names
to source code files containing them (see
Exanpl e 14-5).

Name of nodule that is not part of original
source code. Typically, it will contain data
deconposition directives (see Exanple 14-5).
Name(s) of file(s) to be nmade visible to PPP in
order to correctly translate the current file.
This option is only required for a series of
i nt erdependent include files (see Exanple 14-3).
Indicates that the file that is about to be
translated is a Fortran include file.

Prints the command |ine options

Include file search path. Sinmilar to -1 F77/F90
conpil er option

Indicates that an SMs program to be run on a
machi ne whose normal default is 4 byte rea
nunbers will be, instead, conpiled so that the
default is 8 byte real nunbers.

Controls the output of PPP diagnostic and code
anal ysi s nessages. Errors, Warnings and Notes
are output based on the verbose |evel. (see
Exanpl e 14-8).

Example 14-1 shows how to build a parallel version of an includefile:

>> ppp --header parans.h

[ parans. h]

par aret er ( nx=50,

ny=50)

CSMS$DECLARE_DECOMP( deconp, <nx, ny>)

C gl obal variable declarations ...

Example 14-1: Building any Fortran include file requiresthe --header option.

Example 14-2 shows how to use the paralel version of an include file when trandating
an executable code file. Since the trandation of params.h will result in an SMS parallel
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version of this file (params.h.SMS), we use the --Finclude option to ensure this include
file reference will be changed in the parallel version of dynamics.f.

>> ppp --Finclude=parans. h --coment dynam cs. f
[dynani cs. f]

pr ogram dynam cs

i ncl ude ‘ parans. h’
c Fortran code ...

end

GENERATED PARALLEL PSEUDO CODE

[dynani cs_sns. f]
pr ogram dynam cs

C PPP i ncl ude ‘ parans. h’
i ncl ude ‘ parans. h. SM5
c Fortran code
end

Example 14-2: The-Finclude option isused to specify the Fortran include file params.h which is
referenced in thefile (dynamics.f) being translated. Thisensuresthe parallel (transated) includefile
will bereferenced in thetranslated output of dynamicstf.

Example 14-3 illustrates the use of the --Fvisible option. In this example, the file
“variables.h” requires information about the data decompositions listed in “params.h” to
correctly trandate the declarations “a” and “b” enclosed within the DISTRIBUTE
directive.  In particular, the array dimensions nx, ny and nz must be trandated to
process local sizes using information provided by DECLARE_DECOMP. The --
Fvisible option is used is used to make params.h “visible” to variables.h.

>> ppp --header parans.h
>> ppp --Fvisible=paranms. h --header variables.h
>> ppp --Finclude=parans. h --Finclude=variables.h main.f

[ parans. h]

par anmet er (nx=50, ny=50)
CSMS$DECLARE_DECOMP( deconp, <nx, ny>)

C gl obal variable declarations ...

[variabl es. h]

CSMs$DI STRI BUTE(deconp, nx, ny) BEA N
real a(nx, ny, nz)
real b(nx, ny, nz)

CSMS$DI STRI BUTE END

[ main. f]

program mnai n

i ncl ude ‘ parans. h’

i nclude ‘variables.h
c ot her code

end

Example 14-3: The --Fvisible option isused when inter-dependent include files must betranslated.
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In Example 14-1, the DECLARE_DECOMP was added to an include file that already
existed (par ans. h). If the user prefers to insert the SMS directives into a separate
“directives’ file, the option --Fcommon is used instead of --Finclude. Example 14-4
illustrates the --Fcommon option.

>> ppp --header directives.inc
>> ppp --Fcomon=directives.inc dynamics.f

[directives.inc]
CSMS$DECLARE_DECOVP( deconp, 2)

[dynani cs. f]
program mnai n

c nore Fortran code
end

GENERATED PARALLEL PSEUDO CODE
program nai n
i nclude ‘directives.inc. SVM5
i ncl ude ‘ parans. h’
c nore Fortran code
end

Example 14-4: In thisexample DECLARE_DECOMP, defined in “directivesinc”, isrequired by
“dynamics.f” when the parallel executableisbuilt. It isnot needed for a serial build.

Example 14-5 shows how to handle Fortran 90 modules in SMS. The
DECLARE_DECOMP directive is inserted into a separate “directives’ module in a way
analogous to the include file in Example 14-4. In addition, the main program uses a
modul e needed by the serial code.

[ deconp. F]
1 nodul e deconp

2 CSMS$DECLARE_DECOVP( dh, 2)

3 end nodul e deconp

[ mL_nodul e. F]

1 nmodul e nl

2 CSMs$DI STRI BUTE(dh, 1, 2) BEA N

3 real, allocatable :: u(:,:,:)
4 CSMs$DI STRI BUTE END

5 end nodule ml

[ main. F]

1 progr am USE_MODULES

2 use nil

3 i nteger, paraneter :: im= 10
4 i nteger, paraneter :: jm= 20
5 i nteger, paraneter :: km= 30
6

7 CSMS$CREATE_DECOVP(dh, <imjnp, <1,1>)
8

9 al l ocate(u(imjmkm)

10 CSMS$PRI NT_MODE( ORDERED) BEG N

11 print *, size(u,1), size(u,2), size(u,3)
12 CSMS$PRI NT_MODE END

117



13 end

[my_| ookup file]
deconp deconp. F
nil ml_rmnodul e_cpp. f

Example 14-5: Code and module look-up fileillustrating how SM S handles Fortran 90 modules. See
text for explanation.

To handle this code correctly, the decomposition module file must be translated first:

>> ppp deconp. f

Notice that the “--header” option is NOT used in this case in contrast to the case where
an includefile istrandated.

Next, the module file is trandated. Since the module file contains reference to the
decomposition, “dh”, the decomposition module must be made visible to SMS during
trandation. Thisis done with the “—Fmodule=decomp” option. This option tells SMS to
insert “use decomp” in the translated version of the module file. SMS must also know
the mapping of modules to the files that contain them. In this case, module decomp is
contained in file deconp. F. The lookup table specifies that mapping. The file
containing this look-up table must also be specified when trandating mL_nodul e. F.
The full command is:

>> ppp —-Fnodul e=deconp --Fl ookup=mny_l ookup_file ml_nodul e. F
Finally, the command line for translating mai n. Fis:

>> ppp —-Fnodul e=deconp --Fl ookup=mny_| ookup_file main.F
14.4 Building SM S Programs

A simple makefile is presented to aid the user in building an SMS program. The
environment variable “SMS’ must be set to the location where the SMS software has
been installed. This can either be done explicitly in the Makefile (line 5) or viaset env
prior to running make (e.g. set env  SM5 pat hnane).

1 # standard nake file used to build serial or SMsS parallel

2 # execut abl es

3 #

4 .SUFFI XES: .f .o

5 SMS = /usr/local /sns

6

7 # systemspecific conpilation flags (for a Conpaq Al pha EV67)
8 FC = npi f 90

9 FFLAGS = -4 —arch host —tune host -fixed -1$(SMS)/include
10

11 # SM5 link libraries
12 LIBS = -L$(SM5)/lib -Isms -I|npi

14 # PPP specific options set here
15 PPP = $(SMS)/ bi n/ ppp

118



16 PPP_FLAGS = --Fi ncl ude=parans. h --Finclude=variables.h --coment \
17 - -checkfirst

18 PPP_HEADER FLAGS = --header --conment

19

20 # include files

21 | NCLUDES = parans. h variabl es. h gl obals.h
22 PI NCLUDES = ${| NCLUDES: . h=. h. SMS}

23

24 # object files
25 OBJS = filel.o file2.0 file3.0

26

27 TARGET = par_prog

28

29 # executabl e

30 $(TARGET): $(PI NCLUDES) $(0BJS)

31 $(FC) -0 $(TARGET) $(0BIS) $(FFLAGS) $(LIBS)
32

33 # suffix rules

34 .f.o: $(PI NCLUDES)

35 $(PPP) $(PPP_FLAGS) $*.f

36 $(FC) -c $(FFLAGS) $*_sns.f

37 /bin/fmy —f $*_sms.0 $*.0

38

39 # include file translations

40 par ans. h. SVS: par ams. h

41 $(PPP) $(PPP_HEADER FLAGS) parans. h

42

43 variabl es. h. SM5: variables. h parans. h

44 $(PPP) $(PPP_HEADER FLAGS) --Fvisibl e=parans.h variables.h
45

46 cl ean:

47 /bin/rm—f $(TARCET) *_sms.f *.SM5 *.0 *.tnp

Example 14-6: A makefilefor an SM S program.

14.4.1 M akefile Compiler and Linker Options

The Fortran compiler flags (FLAGS on line 9) are set for a Compaq Alpha EV67. Other
systems will require different options. A makefile provided in the SMS distribution
($SM S/lib/makefile.header) gives recommended compilation flags (found in variable
STD_OPT_FLAGS) that should be used when modifying FFLAGS for a different target
machine.

14.4.2 Include File Handling

Include files are listed in the makefile variable INCLUDES. Parallel include files (line
22) trandated using SMS are built using the explicit targets params.h.SMS and
variables.h.SVIS (lines 40-44). Notice the PPP command to build variables.h.SMS (line
44) contains the --Fvisible option in addition to the standard PPP flags defined by:
PPP_HEADER_FLAGS at line 18. Since variables.h.SMS requires information from
params.h for proper translation, this option is required (see Example 14-3).

PPP_FLAGS (lines 16-17) lists the include files that are translated by PPP via the --

Finclude option. This option is required to ensure any references to these files in Fortran
source will be modified to their parallel filename (see Example 14-2).

119



14.4.3 Building the Executable
To build the SMS parallel executable “par_prog” using this makefile, smply run make:
>> nake

Trandated source code iswrittento thefile“fil el _sns. f”.

14.5 PPP Error Reporting

Two types of errors are reported by PPP: parsing errors and semantic errors. Parsing
errors must be corrected before further translations of the input file are permitted.
Semantic errors are reported as errors, warnings or notes. These messages can be
controlled through the --verbose option of PPP (see Section 14.5.2).

14.5.1 Parsing Errors

Parsing errors occur when PPP cannot resolve the Fortran source code to the grammar
defined by the SMS directives (refer to the SMS Reference Manual), the Fortran 77
language, and currently supported Fortran 90 syntax. Further details about language
extensions supported by SMS can be found at:

http://www-ad.fs.noaa.gov/ac/SMS Supported Fortran Features.html

The parser currently supports statements or SM S directives that are up to 500 characters
in length. Multiple statement lines are collapsed and white space is removed before
statements are parsed. Statements longer than 500 characters will not be parsed correctly.

The form of aparsing error message is:

<fil enane> <line> <columm> <error type> <nessage>

fil enane - nane of file being parsed
line - line nunber
col um - colum nunber in which error occurred
error type - types are:
ERROR, WARNI NG, NOTE
nmessage - di agnosti c nessage

An example of a PPP-generated parsing error is shown in Example 14-7.

1 CSMS$DECLARE_DECOVP( spec_dh, <j trun>)
2 CSMS$DI STRI BUTE( spec_dh, jtrun) BEG N
3 real *8 cc(jtrun), bb(jtrun)

4 CSMs$DI STRI BUTE END

5

6 CSMS$PARALLEL(spec_dh, m BEQ N

7 do 3 me2, jtrun, 2

8 cc(m =cc(m + bb(m

9 3 continue

10
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11 C CSMS$PARALLEL END is m ssing
12
13 end

Example 14-7: Codethat generatesa PPP parsing error.

PPP generates the following error message:

"Loops_sns.f.tnp" 13 501 ERROR Syntax error
"Loops_sns.f.tnp" 13 501 NOTE Parsing resuned here

This message indicates the parser failled in the file Loops_sns.f.tnp at line 13
column 501. A parsing error occurring at column 501 indicates no resolution of the
statement to the grammar by the end of the line. In the example, the parser expects a
PARALLEL END directive before the end of the file. Naturally, the error should be
corrected in the original file (Loops. f ) rather than the PPP-generated file.

14.5.2 PPP Diagnostic M essages

Three levels of diagnostic messages are reported by PPP. A PPP ERROR is reported
when a section of code targeted for trandation contains a syntax or semantic error. A
PPP WARNING is reported when PPP suspects that it may generate an incorrect
trandlation. A PPP NOTE identifies a place where a particular type of transformation
occurred or SMS limitation was detected. By default, al PPP ERROR messages will be
output. Control of diagnostic messages is handled through the PPP command line option:
“--verbose = <val ue>". Three verbose options are supported:

val ue message donain
1 PPP ERRCRS only (DEFAULT)
2 PPP ERRORS and WARNI NGS onl y
3 PPP ERRORS, WARNI NGS and NOTES

While the error messages should always be addressed, warning messages may aso be
useful for detecting potential problems. For example, the code segment in Example 14-8
below causes PPP to generate the following important warning message:

1O f. tnp” 11 13 WARNI NG This vari abl e, deconposed by CSMS$DI STRI BUTE,
is being used outside of a parallel region.

This warning message indicates a problem on line 11, column 13 of the PPP-generated
filel O. f. tnp (which is not shown). The variable cc was defined to be a distributed
array (using DISTRIBUTE) but is being referenced outside a paralel region
(PARALLEL). Further explanation on the use of these directives can be found in Section
2.3.

>> ppp --verbose=2 QO p
1 CSMs$DI STRIBUTE(dh, m n) BEG N

2 real cc(mn)
3 CSMS$DI STRI BUTE END
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10 ¢ nore code ...

Example 14-8: Codethat generatesa WARNING because the decomposed variable“cc” isbeing
used outside of a parallel region.

14.6 Compilation Errors

During the trandlation process PPP generates new variables for some trandations. PPP
variables are either automatically generated or defined explicitly by PPP. Explicitly
defined names will always contain a double underscore in their name (e.g. ppp__status).
To avoid compiler errors due to name space conflicts, avoid using variable names with
double underscores in them. For example, the serial code cannot contain a declaration of
a variable named ppp__ st at us because PPP trandation explicitly declares a variable
named ppp__st at us for its own use. A compilation error would result because two
variables would be declared with the same name.
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15 Running an SM S Program
15.1 Introduction

Once a program has been trandlated into SMS parallel code (Section 14.3) and linked to
the appropriate libraries (see Section 14.4), it can be run on one or more pProcesses using
the SMS program launcher sms Run. The standard syntax for smsRun is:

>> snsRun —Np nunprocs execnane

By default, SM'S uses an additional server process to perform 1/0O operations, and provide
overall management and control services for the other processes (see Figure 11-5). For
example, to run the executable t est with two processes and one server process, the user
would enter:

>> smsRun —np 2 test

It is possible to take advantage of the idle compute cycles available on the server process
by setting SMS environment variable SM5_SERVER MODE to ser ver | ess. Thiswill
permit computational and management functions to co-exist in a single process. This
option is beneficial when only a small number of processes are available. However, as
the numbers of processes grow, the cost of performing both server functions and
computations will limit the performance of the other dependent processes.

Figure 11-5 assumes a single process is run on each processor. However, SMS permits
the user to request more processes (using snsRun) than available processors. For
exampleif my_pr ogr amwas run with 20 processes

>> smsRun —np 20 my_program

on a system with only 16 processors, five processors would contain two processes, one
would contain the server process, and the rest would each contain a single process
designated to run the program. This is a bad idea because performance will suffer
whenever multiple processes are scheduled on a single processor on most machines.

15.2 Optional Command Line Arguments

Severa optional arguments to snsRun are permitted. One optional argument to control
the number of 1/0O write-cache processes to be dedicated to the program’s execution can
be expressed by:

>> smsRun —np 20 my_program -wc 2

This command runs my_pr ogr amon 20 processes with one additional server process.
Also, two additional, processes are used to cache data written to disk. The use of write-
cache processes to improve output performance is discussed in Section 11.3.5.
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The —cf option is used to gain more control over process layout as described in Section
3.3. In the example below, program nmy_program s run using the process layout
specified in configuration filermy _confi g:

>> snsRun —cf ny_config my_program

The—cv option is used to assist debugging by turning on COMPARE_VAR directives as
described in Section 13.1. In the first example below, program ny_pr ogr amis run
simultaneously on 1 and 9 processes. Arrays specified in COMPARE_VAR directives
are compared on-the-fly. If a difference is found, execution is halted and an error
message is printed. In the second example, different executables are loaded (useful for
comparing a seria run to a parallel run or for testing static memory codes that use
minimum memory) and the second program uses a configuration file.

>> smsRun —np 1 ny_program —np 9 ny_program -cv
>> spsRun —np 1 ny_progranil —cf my_confi g9 ny_program® -cv

Another option, - sns-, alows the user to specify machine-specific arguments to the
underlying communication layer (e.g. MPI, SHMEM) directly. All arguments that follow
this option will be ignored by SMS and passed directly to the communications software.
The following command illustrates a way to pass the run-time option - npi _speci al
to the underlying program launcher (which isnpi r un when SMSis built using MPI):

>> snsRun —np 3 my_program -sme- -npi _speci al

Information about other machine-specific options for snsRun is available at the
following SMS web site:

http://www-ad.fsl.noaa.gov/ac/SMS Run Options.html

15.3 Run-time Environment Variables

Several environment variables can also be set to control the run-time behavior of SMS.
The following environment variables are available:

SMS_BI TW SE - Set to “EXACT” to use bit-w se exact reductions
(see Section 7.2)
SM5 CHECK HALO - Set to “ON' to execute checks of hal o regions

speci fied by CHECK HALO directives (see
Section 13.2).

SM5 CLOSE MODE - Use to inprove output perfornmance (see
Section 11.3.4).

SM5_| O FORNMAT - Use to specify file format for files that are read or
witten by SMS

SM5 | OC_SI ZE - Use to inprove output performance (see
Section 11.3.5)

SM5 RAN RSTYLE - Use to inprove input perfornance (see
Section 11.3.6).

SM5_RBC - Use to inprove input performance (see
Section 11.3.6).

SM5_RBS - Use to inprove input performance (see

Section 11.3.6).
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SVM5 _READ FORMAT - Use to specify file format for files that are read by
SM5 prograns (see Section 11.1).

SM5_SERVER MODE - Set to “SERVERLESS’ to avoid using a server process
(see Section 11.3.2).

SM5_WBS - Use to inprove output performance (see
Section 11.3.5).

SMB WRI TE_FORMAT - Use to specify file format for files that are witten
by SMS prograns (see Section 11.1).

SM5_XFERMODE - Use to choose optinmal communication patterns for
TRANSFER. Options are: “LOGN' and “ORI G NAL".

15.4 Run-time Error M essages

When an error occurs in an SMS program, execution will usually terminate and SMS will
generate an informational message describing the source file name, line number, and a
brief summary of the problem. A complete set of SMS run-time error messages is
available at the following SMS web site:

http://www-ad.fsl.noaa.gov/ac/SMS M essages.html

When the code in Example 3-3 is run with 2 processes, the following error message is
generated (as seen in Section 3.4):

Pr ocess: 1 Error at: ./deconp_ex4 sns.f:10.1

Process: 1 Error status= -2202 . USER DECLARED STATIC ARRAY IS TOO
SMALL.

Pr ocess: 1 Aborting...

The first line of the error message indicates the file name and location within the file
where the problem occurred. PPP-generated code frequently uses sub-numbering to
handle multiply generated calls to SMS routines that stem from the same line of original
code. Inthisexample, arun-time error was detected by SMS at line 17 in code generated
by the direcive CREATE DECOMP that can be found in temporary file
deconp_ex4_sns. f. t np (not shown).

The second line gives the SMS error message. The error messages reflect the incorrect
sizing of the decomposition deconp, declared by DECLARE_DECOMP and initialized
by CREATE_DECOMP.

Once the problem is understood corrections to the code can be made. These corrections
should go into the original file (in this case deconp_ex4. f) not in the temporary file
where the problem was detected and probably diagnosed. Once changes are made, PPP
can be executed to re-trandate the input file from which a fresh executable can be built
and tested.
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